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Abstract: We study statistical inference for the linear effects in partially linear regression models
with correlated errors. To estimate these effects, we introduce several local linear backfitting
estimators. Our asymptotic mean squared error calculations establish that these estimators achieve
v/n—consistency provided we use smoothing parameters that undersmooth the estimated smooth
effect. We introduce three methods for choosing smoothing parameters from the data. Two of
these methods are modifications of the Empirical Bias Bandwidth Selection method of Opsomer
and Ruppert (1999). The third method is a non-asymptotic plug-in method. Using our estimators
and smoothing parameter methods, we construct approximate confidence intervals for the linear
effects. Based on a simulation study, we recommend one estimator and two smoothing parameter
choices. We illustrate our recommended inferential procedures with an analysis of data collected

in a community-level time series study of the health effects of air pollution.

1. INTRODUCTION

Partially linear models combine the ease of interpretation of linear regression models with the
modelling flexibility of non-parametric regression models. They generalize linear regression
models by allowing one or more of the covariate effects to be smooth, of unknown form,

while keeping other covariate effects linear. Determining how much to smooth the estimator



of the non-parametric component is crucial, with the amount of smoothing depending on
the goal. Here our goal is inference on the linear component of our model when errors are
possibly correlated. We study backfitting estimation procedures and show how to choose the
amount of smoothing and how to construct confidence intervals for the linear component.
We consider partially linear models with one smooth covariate effect. Specifically suppose
we observe the data (Y;, X;;,Z;), i =1,...,n,j = 1,...,p, where Y; is a continuous response,
Xi1, ..., X, are measurements on p covariates and the Z;’s are fixed design points which,
without loss of generality, we assume lie in the unit interval. Our model for these data is
given by
Yi= 6o+ 51 Xi + -+ B Xip + m(Z;) + €, (1)

where 8 = (Bo, B1,---,0,)" is an unknown parameter vector, m is an unknown, smooth
function and the ¢;’s are error terms. To ensure identifiability, we assume that m satisfies
the integral restriction fol m(z)f(z)dz = 0. In practice, we replace the integral by the

summation restriction
n
> m(Z;) =0. (2)
i=1

We assume that the errors are such that E(e;) = 0, Var(e;) = 02 > 0 and Corr(e;, ¢;) = 5,
with ¥ denoting the n X n error correlation matrix. Hardle et al. (2000) provide a detailed
exposition of partially linear models.

In this paper, we are interested in the linear effects 3, treating m and the correlation
between the ¢;’s as nuisances. In particular, we wish to address the following two ques-
tions. How should we choose the degree of smoothness of the estimator of m to accurately
estimate 37 How can we construct valid confidence intervals for linear combinations of 3’s
components?

Model (1) has been investigated extensively under the assumption of independent, identi-
cally distributed errors. A common theme of the published results has been determining if 3
can be estimated \/n—consistently. Speckman (1988) showed that his partial residual based
estimator of B can achieve y/n—consistency if m is estimated at the ‘usual’ nonparametric

rate of n=*/°. Opsomer and Ruppert (1999) established that their backfitting estimator of
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B can also achieve y/n—consistency provided m is estimated at a slower rate than the ‘usual’
nonparametric rate.

Most of the literature concerning partially linear models with correlated errors has focused
on Speckman-type estimators of 3. In the first of a series of theoretical papers, Aneiros-Pérez
and Quintela-del-Rio showed that their modified Speckman estimator of 3 is \/n—consistent
when the errors are a-mixing, stationary (2001a). To choose the amount of smoothing needed
for accurate estimation of m, they proposed using cross-validation, modified for correlated
errors (2001b). To choose the amount of smoothing needed for accurate estimation of 3,
they proposed and studied an asymptotic plug-in method (2002), but did not implement it.
Their theory requires that the errors follow a stationary autoregressive process of known finite
order. For the case of a—mixing, non-stationary errors, You and Chen (2004) proposed two
methods for constructing confidence intervals for B using the usual Speckman estimator.
One method is based on asymptotic normality of the estimator; the other is based on a
block bootstrap. You et al. (2005) constructed confidence intervals and tests of hypotheses
for functions of 3 based on a jackknife estimator for 3, which they obtained from the usual
Speckman estimator; their inferential procedures are valid under the assumption that the
errors follow a stationary moving average process of possibly infinite order.

Backfitting-type estimators in partially linear models are popular with practitioners in
a variety of research areas. They are easy to compute, through the gam function in the
statistical packages R and Splus, and they allow for easy interpretation of the effect of
the covariate of interest. They have been used extensively in the analysis of the health
effects of air pollution. See, for example, Dominici et. al. (2002) and references there-in.
However, little is known of their theoretical properties in the presence of error correlation.
Even practical implementation for uncorrelated errors has had problems, in particular the
implementation in the S-Plus function gam. Dominici et al. (2002) showed how to correct
problems with gam’s default parameters, in order to improve estimators of 3’s components
and their standard errors. Ramsay et al. (2003) pointed to a further problem with gam’s

approximate standard error calculation. Dominici et al. (2004) resolved this problem by



providing software for exact standard error calculation.

In this paper, we fill in the gap in the literature about the use of backfitting estima-
tors when errors are correlated. We derive conditions under which these estimators can
achieve /n—consistency. We introduce three data-driven methods for choosing the degree of
smoothness of the estimator of m when accurate estimation of ¢ 3 is desired, with ¢ being
user-specified. Two of these methods are based on the Empirical Bias Bandwidth Selection
method of Opsomer and Ruppert (1999), modified to account for possible error correlation.
The third method is a new non-asymptotic plug-in method. We also propose methods for
constructing approximate confidence intervals for ¢’ 3 and we investigate their finite sample
properties by means of a simulation study. Our simulation study includes a comparison with
confidence intervals constructed from the usual Speckman estimator. Finally, we apply our
preferred inferential procedures to the analysis of data collected in a community-level time
series study of the health effects of air pollution.

The rest of the paper is organized as follows. Section 2 introduces three backfitting
estimators of 3, and their asymptotic properties are given in Section 3, along with the
asymptotic properties of our estimator of m. Section 4 presents our data-driven methods
for choosing the appropriate amount of smoothing for accurate estimation of ¢'3. These
methods require preliminary estimation of the non-parametric component m and the error
correlation structure, topics discussed in Section 5. Section 6 introduces standard and bias-
adjusted confidence intervals for ¢' 3. A simulation study is carried out in Section 7. Section
8 presents the results of our data analysis. Some conclusions are drawn in Section 9. The

proofs of the main results are provided in Section 10, with lemmas presented in the Appendix.

2. BACKFITTING ESTIMATORS

We now provide a formal definition for the generic backfitting estimators of the unknowns
B and m = (m(Z,),...,m(Z,))" and then restrict discussion to three particular types: the

usual, the modified and the estimated modified backfitting estimators.



LetY = (Y1,...,Y,)", X be the nx (p+1) design matrix corresponding to the parametric
part of model (1), Z = (Z;,...,Z,)", and Q be an n x n matrix of weights such that the
(p+1) x (p+1) matrix X "QX is invertible. The choice of © determines the particular type
of backfitting estimator. Let S} be an n x n smoother matrix depending on a smoothing

parameter b and let S} be the centred version of S}, obtained as
= —117/n)S, (3)

where 1 is an n-vector of 1’s.
The generic backfitting estimators Bn,h and Mgy of B and m are defined as the fixed

points of the backfitting equations

Ban = (XTQX)' X QY — mq,)

man = S5(Y — XBq,).

Use of the matrix S}, instead of S} ensures that ﬁgﬁ satisfies the identifiability condition
(2).

In practice, one could solve the backfitting equations for ,@Q,h and mgq ), iteratively by
employing a modification of the backfitting algorithm of Buja et. al. (1989), who consider
the case € = I. However, we need not iterate to find Bﬂ,h and Mg, since we can derive
explicit expressions for both. Provided the matrix X "Q(I — S8%)X is invertible, algebraic

manipulations of the backfitting equations yield
Banr= (XTQUI - S5)X) 'XTQ(I - S5)Y = Mq,Y (4)
and
man=S5,(I - XMgq,)Y. (5)

We consider three specifications of @: Q =1, Q=¥ 'and Q = \/I}il, where ¥ estimates
¥. Taking @ = I in (4) yields the usual backfitting estimator of 3. We would expect that

this estimator is not efficient as it does not account for the error correlation. When W is



known, taking © = ¥~ yields the modified backfitting estimator, which we would expect
to be more efficient. In the usual case that ¥ is unknown, we use = \/I\l_l and refer to the
resulting estimator as the estimated modified backfitting estimator.

We compute these backfitting estimators of @ by taking S}, to be the n x n local linear

smoother matrix, whose (7, j)th element is defined as:

(Z:)

Sij= —2
TS w
where
wf) = (2225 [$10(0) — (¢~ 208 ()], k=1,..m.

Here, K is a user-specified kernel function and

Sua(z) = iK(Z

Local linear smoothing is an effective smoothing method in nonparametric regression; see

Fan and Gijbels (1992) and Fan (1993).

—Z
. k)(z—Zk)l, 1=1,2.

3. ASYMPTOTICS

In this section, we determine the asymptotic conditional bias, variance and mean squared
error of B 7, and Bw—l,ha given X . We establish that, for these estimators to converge to 8
at the usual parametric rate of 1/n, we should choose the bandwidth A to be of order n=?,
a € [1/4,1/3). We also calculate the asymptotic bias and variance of our estimators of m
and show that optimal estimation of m in our context requires A = O(n~'/%), a much larger
value of h. We therefore conclude that, to accurately estimate 3, we should undersmooth

the estimated m. Finally, we give conditions on T that ensure that ,@ g1, is close to B\I,—l,h.

h
The proofs of the theorems appear in Section 10.
Throughout this section, the X;;’s are random and the Z;’s are fixed. In addition, we will

assume, as in Speckman (1988), that the X;;’s and Z,’s are related via the nonparametric



regression model
XZJ:g](ZZ)—i_T]Z]’Z:l?7n:]:1:7p7 (6)

where the g;’s are smooth, unknown functions and the 7;;’s are unobserved error terms

having mean 0. We also assume the following.
(A1) The bandwidth h = h, satisfies h — 0 and nh® — 0o as n — oo.
(A2) The functions m and gy, ..., g, have three continuous derivatives.

(A3) The Z;’s follow a reqular design, i.e. there exists a strictly positive, twice continuously

differentiable density f on [0,1] with

Z;

{
0 f(z)dz_n+1a

1=1,...,n.

(A4) The kernel function K is a probability density function symmetric about zero and Lip-

schitz continuous, with compact support [—1,1].

(A5) The random wvectors {(mi,...,mip) ,i = 1,...,n} are independent, identically dis-
tributed, having mean 0 and covariance matrix . Furthermore, they are independent

of the errors {¢;, j =1,...,n}.

(A6) The €;’s are realizations of a mean 0, covariance stationary process with Var(e;) = o2

and Cov(€;, €i4x) = 02U, 4% = 02p(k).

In Theorems 1, 2 and 3 below, we place additional restrictions on W, the correlation
matrix of the ¢’s. In Theorem 1, which provides asymptotics for ,@ 11> the conditions are
quite mild. In Theorem 2, which provides asymptotics for B\I,fl,h, we impose the restriction
that the ¢;’s are from an autoregressive process of known finite order. This allows us to find
an explicit expression for ™', In Theorem 3, where we study the asymptotic behaviour of
My and g1 5, we assume that > k[p(k)| < oo, a condition satisfied by autoregressive

processes of finite order.



Before stating the main results in this section, we introduce some useful notation. Set

go(z) =1 and let G be an n x (p + 1) matrix and g* be a (p + 1)-vector with
Gy =551(%) and 55 = [ 45205
Also, let w be the (p + 1)-vector with
wi= [ oa@m @ - [ @i [ s
Define the (p+ 1) x (p + 1) matrix = as

0 o'
0 X

»O) —

Finally, set v;(K) = [, v/ K (u)du.

THEOREM 1. In addition to assumptions (A1)-(A6), assume the following.
(A7) ¥ has a bounded spectral norm as n — oo.

(A8) There exists a p X p matriz ® with ZZi’:l niiNi Wiz /1 converging to @, in probability
as n — oo.
Let Vi =3O 4 g*¢*T and
0 o'
0o &

$O) —

If the identifiability condition (2) holds, then

~ 2
() Bias(Bral X) = ~ o 0a(K)V'w + 0p(h) = Op (1),

3 ~ 2 ok . . _ _
(i) Var(Br,|X) = %V,1¢<°>V,1 + ﬁvllaT(I ~8)W(I-85)"GV; +op (n7!)
= 0p (n")
and
~ h4 o2

(iii) E (||5,h _ B2 |X) = L 2w Viw + Ztrace {V;lq><°>v;1}

’ 4 n

2

+ %tmce {(ViIGT(I-S)®(I-5)"GV;'} +op(h*) +op (n7")

== Op(h4) + OP (Tl_l) .



THEOREM 2. In addition to assumptions (A1)-(A5), assume that

(A9) the €;’s represent n consecutive realizations from a covariance stationary autoregressive

. . . . 2 . .
process of finite order R having mean 0, finite, non-zero variance o. and satisfying

€= G161 + Po6ro+ -+ Pre_p +uy, t=0,£1,£2, ...

with {u}, t = 0,£1,+2,... being independent, identically distributed random variables

having mean 0 and finite, non-zero variance 05.

Set

o2
O-U

2
o? ¢ ot ¢ -
Vg = (1+Z¢i)2(°)+§(1—2¢k gg’.
u k=1

If the identifiability condition (2) holds, then

2
. N h? o’ & _
(i) Bias(Bg-1,4X) = —1a(K) (1 - ¢k> Viw + op(h?) = O, (h?),
“w k=1
3 ~ 1 o; 2 pols0y-1
(i1) Var(Bg-1 4| X) = i 1+ Z¢k Ve EWVy
w k=1

2
+ VGO I - S)U(I - §;) T8 GV +0p (n7') = Op (n7)

and

4
-~ ht ol & _
i) B (|1Byi, = BIBIX) = 1K) - 25 (1—}3@) w Vgiw
k=1

R
. (1 + Z qﬁ%) trace {V?Z(O)V‘}}}
k=1
2

O¢ - - c c - -
+ —trace {(VIGTT ' (I-8)¥(I-S5)" ¥ 'GVy'}

_|_

@qw | mqu;

1
n

+ 0p(h4) + op (n_l) = Op(h4) + op (n_l) .

COMMENT 1. The matriz Vg s strictly positive definite since it is non-negative definite

and, if v  Vgv = 0, then we can easily show that v is the zero vector.
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COMMENT 2. Theorem 2’s conditions are a special case of Theorem 1’s. To see this, suppose
that (A9) holds. Then clearly (A6) holds. Assumption (A7) holds by Lemma 3 (i) in the
Appendiz. To see that (A8) holds with ® = X, write
— Z NijNirjr Wiz = anmg + = ZP i— 7| )it = annm + - Z,D )Sk
M= "

where S} = n’l[Z;:l MiiMithyg' + Doipos1 Mgk, |- By the weak law of large numbers,
S i/ converges to its expectation, namely Y. To show that S i1 p(k)SP/n con-
verges to 0 in probability, first note that the summands in each of the two terms in S} are
k—dependent and so, using the weak law of large numbers for k-dependent sequences, Sy
converges to 0 in probability as n — oco. Clearly, |[E(S})| < B for some B independent of k
and n. Thus for fized ko, Zk L P(k)SE converges to 0 in probability and

n—1 o]
E( > p(k)5;?> <B Y
k=ko+1 k=ko+1

which can be made arbitrarily small by taking ko large. Therefore Zz;i p(k)SE/n converges
to 0 in probability and (A8) holds.

Under what conditions on h are the estimators ,@I,h, B\I,—l’h and B@—lﬁ \/n-consistent?
To answer this, we first use Theorems 1 and 2, letting ,/C'\In’h denote either ,/B\I’h or ,/8\\1,71,,,.
If his of order n™®, o € [1/4,1/3), then we have the required h — 0, nh® — oo and
E(||,/B\Q7h—,3|\2|X) = Op(1/n). Thus ,/B\I’h and qu—l,h are y/n-consistent. If one assumes that
XT(& — 0 ) (I-55)X/n=0,(1) and X (¥ — T )(IT-S5)(Y = XB)/ Vi = o)
then one directly shows that ,@@—1’h - ,@\I,—l’h = op(1/y/n). Thus ,BA—I n-consistent
whenever ,/8\\1,—1,,Z is. These technical conditions are similar to conditions (A.15) and (A.16)
imposed by Aneiros Pérez and Quintela del Rio (2001a) for studying the effect of estimation
of ¥ on the rate of convergence of their modified Speckman estimator. Unfortunately, such
conditions are difficult to check.

The following theorem provides explicit expressions for the asymptotic bias and variance
for components of g, where Q = I or ¥ ! From these, we see that the A that minimizes

[mq.)i’s asymptotic conditional mean squared error is of order n='/5.
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THEOREM 3. Let mg, = S§,(Y — X,@Qh) Suppose either (i) Q = I and the conditions
of Theorem 1 hold, or (ii) Q = ¥~ and the conditions of Theorem 2 hold. Suppose in
addition that Y .- | k|p(k)| < co. Let the asymptotic bias of ,@Q’h from (i) of Theorem 1 or
2 be written as h?vy(K)b/2 + 0,(h?) and let G| denote the ith row of G. Then
. K
Bias([q i X) = h% [m”(za - / m"(2) f(2) dz = (Gi. — g*fb] +0,(h?)
uniformly in i such that Z; € [h,1 — h|, and

oo

var([mapli| X) = f(T;nh vo(K?) (p(O) + 221:,0(@) +0,(1/(nh))

uniformly in i such that Z; € [2h,1 — 2h]. Furthermore, Bias([mapui|X) = O,(h?) and
var([manli| X) = O,(1/(nh)) uniformly in all Z;.

In summary, an A that is optimal for estimating m will not be optimal for estimating 3
and vice versa. To accurately estimate m, we should use h of order n=1/5, but this will lead

—2/5

to ,@ converging to B at rate only n=*/°. Conversely if we use an h that is good for estimating

B, namely h of order n=® with « € [1/4,1/3), we will undersmooth the estimated m.

4, SMOOTHING PARAMETER SELECTION FOR ESTIMATING
c'

In this section, we develop data-driven methods for choosing A to obtain accurate backfitting

T is user-specified. We choose h to minimize

estimators of cT,Bnyh, where ¢ = (¢, ¢1,...,¢p)
an estimator of the conditional mean squared error of cT,@. Our minimization is always via
a grid search over a specified grid H = {hy,...,hx}. We first discuss the case when Q = T
or ¥ 1.

To estimate the conditional variance of cT,/B\Q,h, we use (4) and estimators of o? and ¥

(described in Section 5 below), so that

Var(e" Bl X) =52 Mo ¥ M{ ¢, (7)
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We consider three methods to estimate the bias: a local empirical method, a global
empirical method and a non-asymptotic plug-in method. The local empirical method is
essentially the Empirical Bias Bandwidth Selection (EBBS) method devised by Opsomer
and Ruppert (1999) for uncorrelated errors. The global empirical method, a modification of
EBBS, is new. In our simulations we find it performs better than the local empirical method.

Both empirical methods estimate Bias(cT,@Q,h|X ) using the approximation

T
E(CT,BQ,}L|X) %ao-i-Zatht, (8)
t=2
valid as h — 0, where ap = ¢'3 and a;,t = 2,...,T, are unknown asymptotic constants.

This approximation can be obtained by a more delicate Taylor series analysis than that used
to obtain the bias expressions of Theorems 1 and 2.

The two empirical methods estimate Bias(cTBQ,h\X ) using ordinary least squares to fit
model (8). Both methods require a grid of A’s and calculations of cT,/B\Qy,1 for A in the grid.
For convenience, we use the same grid H as for the grid search. The global empirical method
uses the entire ‘data set’ {(h, cTBn,h), h € H} to fit (8) by ordinary least squares, yielding

Qg, ao, - .., ar and an estimator of the bias as a function of A:
Bias(c Bq | X) = E(c Bq

T
> . (9)
t=2

The local empirical method uses subsets of the entire data set, with a different subset and so

X) —a

a different least squares fit for each h. Specifically, fix h* = h; € H and fit model (8) using the
smaller ‘data set’ {(hk, cT,/B\I’hk) : k=j—ky,...,j7+ ko}, where k; and ko are user-defined
tuning parameters satisfying k; + ko > T'. The bias of cT,@th* is then estimated as the least
squares fit 31, @h*,

The non-asymptotic plug-in method we propose for estimating Bias(cTBQ7h|X ) uses

equation (4) and an estimator of m defined in Section 5 below, yielding

Bias(c" Bq,u| X) = ¢ Mqym. (10)
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The formulae for the bias and variance of ,/B\Q’h depend on 2 being non-random. For
~—1 ~
Q=¥ | weignore the fact that ¥ is random and proceed in the obvious way. We estimate
~ o1
the variance of ¢' 3 g1, via (7) with ¥  replacing Q. For our empirical and plug-in bias

~—1
estimation methods, we again replace 2 with ¥

5. ESTIMATING m, o AND ¥

In order to calculate (7) and (10), we need to estimate the nonparametric component m,
the error variance o2 and the error correlation matrix ®. Qur estimator of m depends on
a bandwidth b. This bandwidth is not to be confused with the bandwidth A in Section 4 in
that b is targeted at producing an accurate estimator of X3 + m. This bandwidth b gives
us estimators of m and B3, namely My, and ,@ 15+ Our estimators of o? and ¥ depend on

myyp and Bp,.

5.1. Estimating m.

We estimate m via mirp, with b chosen from the data via cross-validation, modified to
account for possible error correlation. Specifically, if / is a non-negative integer that quantifies

our belief in the extent of the serial correlation in the ¢;’s, we choose b to minimize

n

1 ~ (i 2
MOVi(b) = — > (Vi = X[ Bry — i, (2) (11)

i=1
Here, ,8 1,5 1s the usual local linear backfitting estimator of 3 using all of the data and m(I bz 2
is a centred locally linear estimator of m computed as follows from the partial residuals
Tip=Y; — X-T,@Ib, jg=1,...,n, i —j| > 1. We use the ‘data points’ (Z;,7,s), |1 — j| > I,

in a usual local linear regression to obtain mI( “1(2), z € [0,1] and then centre mI( 5 for

our ‘data’, so that ZJ e m(I bz l)(Zj) =0:

~(—1;1 ~x(—1; 1 ~x(—1; 1
A =) - sy X )

gt li—g|>1

13



It is easy to see that the modified cross-validation criterion in (11) attempts to estimate the

conditional mean average squared error of My, given X.

-~ ~(—i; 1
Note that we use all of the data to compute By, rather than computing both ,B(I’bz ) and

ﬁ([bz l)(Zi) for each i. We believe that our computational simplification will not affect to a
great degree the estimation of m. A similar simplification was used by Aneiros-Pérez and
Quintela-del-Rio (2001b) for their modified cross-validation method.
How does one choose [?7 In theory, [ should be large enough so that there is negligible
correlation between Y; and (Y;, Xj1, ..., Xjp,
(—i

yield a highly variable M C'V}, since T?LI’b Y will depend on very few data points. In practice,

Z;) with |i—j| > [. But choosing [ too large may

we have found that the final results of our methodology are stable over a reasonable range
of [ values. Our simulation study provides further evidence suggesting that the procedure is

insensitive to the choice of [, as long as [ is not too close to zero.

5.2. Estimating o2 and .

To estimate the variance o2 and correlation matrix ¥ of the errors, we assume (A9), that the
model errors follow a stationary autoregressive process of unknown, but finite, order. This
assumption will clearly not be appropriate for all applications. However, we expect it to
cover those situations where the errors are realizations of a stationary stochastic process. In
practice, finite order autoregressive processes are sufficiently accurate because higher order
parameters tend to become small and not significant for estimation (Bos et. al., 2002).

First, we estimate € = (€1,...,€,)' by the model residuals €7, = Y — XBI,,) —myy,
where b is chosen by leave-(2/+ 1)-out cross-validation, as described in Section 5.1. Next, we
use €r to estimate the order R via the finite sample criterion developed by Broersen (2000).
We then estimate ¢ and the unknown parameters in ¥ via Burg’s algorithm, described,
for instance, in Brockwell and Davis (1991). Finally, we estimate ¥ by replacing unknown
parameters with their estimated values.

If assumption (A9) is questionable, we suggest using the €7,’s = €’s to estimate o2 and

14



¥ as follows:

I
A
n

t=1

1 1 n—|i—j|
Vii== |- €t€ryi—j) | » fora # J.
g2 \n &

However, we do not study this approach in this paper.

6. Confidence Intervals for ¢' 3

To conduct inference on ¢’ 3, we use approximate 100(1 — )% confidence intervals con-
structed from the estimators cTB,,,,, CTB\I,A,h and CTB\’I;fl,h, possibly adjusted for finite-
sample bias, and their estimated standard errors. We choose h via the methods in Section
4. Recall that each of these methods produces an estimator of the bias. We will use these
bias estimators to bias-adjust our confidence intervals. We use standard normal probability
cut-offs to construct all intervals. The simulation results presented in Section 7 provide sup-
port for the use of these intervals, although we have not yet demonstrated the asymptotic
normality of our estimators.

The standard 100(1 — )% confidence interval for ¢" 3 constructed from B I 18
—l—/\ —_~ —l—/\
& :BI,h + Za/2SE(C IBI,h)a (12)

where 2,5 is the 100(1 — )% quantile of the standard normal distribution and @(CTB )
is the square root of the estimator of Var(cT,BI,h|X) in (7).
Since ¢'3 1, may be biased in finite samples, the standard confidence interval in (12)

may not be correctly centred. Therefore, we propose the bias-adjusted version:
T3 P e(nT A S (~T7
c Bry— Bias(c ,BI,h) + 24/25E(c ,Bl,h). (13)

Here B/igs(cT,@ 1) is calculated using the same bias estimator used in choosing h.
The length of the bias-adjusted confidence interval for ¢'3 in (13) is the same as that
of the standard confidence interval in (12). The coverage properties of the bias-adjusted

confidence interval may, however, be better than those of the standard confidence interval.
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Standard and bias-adjusted versions for the confidence intervals relying on cT,/B\‘I,_l’h and

cT,B@_l , are obtained in a similar fashion.

7. A SIMULATION STUDY

In our simulation study, we consider model (1) with p = 1 and we conduct inference on f;.
We compare the mean squared error (MSE) of our estimators of f; and the coverage and
length of our corresponding confidence intervals. We also include a comparison with the
usual Speckman estimator. We take n = 100, By = B; = 0 and consider two m functions,
m1(z) = 2sin(3z) — 2(cos(0) — cos(3))/3 and my(z) = 2sin(6z) — 2(cos(0) — cos(6))/6. We
take Z; = i/(n+1) and X; = g(Z;) + n;, with g(z) = 0.4z + 0.3 and 7; uniformly distributed
on (—0.3,0.3). We assume the ¢;’s follow a stationary AR(1) model generated by

61:’U,1/\/1— 2, € = P€i—1 + Uy 7;:2,...,71, (14)

with p = 0, 0.2, 0.4, 0.6 and 0.8. The u;’s, independent of the ¢;’s, are independent,
identically distributed normal random variables having mean 0 and standard deviation o, =
0.5. For each of the ten model configurations, we generate 500 data sets.

Opsomer and Ruppert (1999) used essentially the same simulation settings for their
simulation study, but they only considered the case p = 0, for independent errors.

Figure 1 displays data generated from our model for p = 0,0.4,0.8 and m = m;. The
responses Y; are qualitatively different for different values of p. For p = 0, the responses
vary randomly about the m curve. As p increases from 0.4 to 0.8, the autocorrelation-
induced structure in the variation of the Y;’s about the curve makes it virtually impossible
to distinguish the signal from the autoregressive noise.

The estimators of (3; we consider are of the form 31 = cT,@ = (0, 1),@, where ,@ is:
(i) the usual local linear backfitting estimator B s (i) the estimated modified local lin-
ear backfitting estimator B@—l’h or (iii) the usual Speckman estimator B(Ifsg)T,h- We
choose the smoothing parameters of our two backfitting estimators via the methods in-

troduced in Section 4: the global empirical method, the local empirical method and the
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non-asymptotic plug-in method. We choose the smoothing parameter of the usual Speck-
man estimator as the minimizer of a modified cross-validation criterion, obtained from (11)
by replacing ,@I,b with B(I—Si)T,h and fﬁ(Ij;;l)(Zi) with ffzglngh(Z,) All methods use a grid
‘H ={0.01,0.02,...,0.5}.

The methods require the specification of various tuning parameters. All require an [
for the MCV criterion (11). We consider [ = 0, 1,...,10. In the global and local empirical
methods, we take T' = 3 for the polynomial expansion of the bias in (9). We take k; = ks =5
in the local empirical method.

We made pairwise comparisons of the MSE’s of our estimators computed with our band-
width choice methods by examining boxplots of differences in log MSE’s and by conducting
level 0.05 paired t-tests of the null hypothesis of equality of expected log MSE’s. Specifically
we first made separate comparisons of the bandwidth choice methods for the usual and for
the estimated modified backfitting estimators, to determine our preferred bandwidth choices
for each estimator. We then compared the estimators using our preferred bandwidth choice
methods to the usual Speckman estimator with h chosen by modified cross-validation. For
p = 0, the MSE results were mixed. For p > 0 and [ > 4, however, the results were conclu-
sive. In this latter case, the MSE’s of the usual backfitting estimators tended to be smallest
when using h selected by either the global empirical method or by the non-asymptotic plug-in
method. The MSE’s of the estimated modified backfitting estimators tended to be small-
est when using the global empirical method. The MSE’s of these three preferred methods
of estimation were comparable, and tended to be lower than the MSE’s of the Speckman
estimator.

We studied coverage of both standard and bias-adjusted confidence intervals for 3; ob-
tained from ,IB\I,h and B@—l,h with h chosen by our preferred methods. We also studied
standard confidence intervals based on our Speckman-type estimator. We did not consider
bias adjustments for these confidence intervals because ,B( 1-s¢)T 5 has small bias both when
p = 0 (Speckman, 1988) and when p > 0 (Aneiros-Pérez and Quintela-del-Rio, 2001a). To

assess a method’s coverage we calculated p, the proportion of the 500 resulting confidence
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intervals which contained the true value of 3;. If p fell within 1.96\/m of 0.95,
we deemed that the confidence interval procedure achieved nominal coverage.

We found no advantage to bias-correction and therefore now just discuss standard con-
fidence intervals. Intervals based on B@—l,h with h chosen by our preferred method had
very poor coverage properties and so we eliminated this method from further study. The
remaining three methods, namely those based on B 1,, With the global empirical and non-
asymptotic plug-in choices of h and B( 1-S5)Th produced intervals with much better coverage.
The methods based on B 1,» achieved nominal coverage for p > 0 and [ > 4. The Speckman-
based intervals achieved coverage close to the nominal for small values of [, but tended to
undercover slightly for large values of [ and p > 0. This is illustrated in Figure 2 for selected
simulation settings. Depicted are 95% confidence intervals for the true coverage probability.

We next compared the log lengths of the standard confidence intervals produced by our
three remaining methods. We used level 0.05 two-sided paired t-tests and visual assessments
of boxplots of differences in log lengths. We found that the Speckman-based confidence
intervals tended to be wider, particularly when p > 0. Figure 3, showing average confidence
interval lengths for these three methods, illustrates this for selected simulation settings.

In summary, in the context of our simulation study, the backfitting estimators with A
selected by either the non-asymptotic plug-in method or the global empirical method provide
accurate estimators of (3 and produce narrow confidence intervals that achieve nominal
coverage. We recommend their use, with values of [ that are large enough, that is, at least 4.
The usual Speckman estimator with h selected via modified cross-validation is competitive
and tends to be superior for small values of [. However, this estimator sometimes has
large log MSE and produces slightly longer confidence intervals that sometimes suffer from
slight undercoverage. We do not recommend choosing h by the local EBBS method nor do
we recommend inference using the estimated modified back-fitting estimator of 5;. Both

methods performed poorly in our simulation study.
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8. AN APPLICATION TO AN AIR POLLUTION STUDY

We apply our preferred inferential methodology to the analysis of mortality and air pollution
data collected in Mexico City between January 1, 1994, and December 31, 1996. The data
consist of daily counts of non-accidental deaths, temperature (°C), relative humidity (%),
and daily levels of ambient concentration of PM10 - airborne particulate matter less than
10 microns in diameter (10ug/m?). Our goal is to determine if the pollutant PM10 has a
significant short-term effect on the non-accidental death rate in Mexico City after controlling
for long-term temporal trends and meteorological confounding.

Pairwise scatter plots of the data are shown in Figure 4. The most striking features in
these plots are the strong annual cycles in the daily levels of mortality, PM10, temperature
and relative humidity. The annual cycles in the mortality levels are possibly produced by
unobserved seasonal factors such as influenza and respiratory infections. Our analysis of the
health effects of PM10 must account for the potential confounding effect of these annual
cycles on the association between PM10 and log mortality.

Let D; denote the observed number of non-accidental deaths in Mexico City on day 1,
and let P;,T; and H; denote the daily measures of PM10, temperature and relative humidity,
respectively. A model that provides an adequate description of the variability in the log

mortality counts is:
log(D;) = By + B P; + BoT; + BsH; +m(i) + €, =1,2,...,1096. (15)

Here, m is an unknown, smooth univariate function representing a long-term temporal trend.

We estimate (3; via (O,I,O,O)BI,h = cT,/B\I’h. To choose h, we use our two preferred
methods: non-asymptotic plug-in and global empirical. For both methods, we use a grid
H = {7,8,...,90}. For the global empirical method, we take T = 4 in equation (8). We
allow the tuning parameter [ of the leave-(2[ + 1)-out cross-validation to take on the values
0,1,...,10 to investigate sensitivity to the choice of I. See Ghement et al. (2006) for more
details of the data analysis, including model selection and choice of 7" and H.

Figure 5 shows the corresponding 95% confidence intervals for 3; obtained from formula
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(12). The two methods produce remarkably similar confidence intervals. Further, the choice
of [ has little influence on these intervals, likely because the extent of the residual correlation
present in the data is modest. From Figure 5, there is no conclusive proof that 3;, the

short-term PM10 effect on log mortality, is significantly different from 0.

9. FINAL REMARKS

We have provided asymptotic theory for backfitting estimates of 3 and m in the partially
linear model (1) with correlated errors. Our theory shows that the smoothing parameter
appropriate for inference for 3 is different in order of magnitude from the smoothing param-
eter appropriate for inference for m. We propose and study several methods for smoothing
parameter choice and for constructing confidence intervals for linear combinations of the
components of 8. Our simulation study indicates that the popular Speckman estimate per-
forms reasonably well, except when data are highly correlated. We also find that the EBBS
method for smoothing choice does not perform well, but a modification, a global EBBS does
perform well. We also found that a non-asymptotic plug-in method did well.

We hoped to improve efficiency of our estimators by a generalized least squares approach,
that is, via our estimator ,@@—1’” However, our simulation studies indicated that such an
approach was unsuccessful, even when our errors followed a simple AR(1) process. Thus,
we recommend using B 1,n- We also considered adjusting our confidence intervals to account
for the bias in B These bias adjustments yielded no improvement in the context of our

simulation.

10. PROOFS OF THEOREMS

Throughout we use the notation that, for a matrix A, A.; denotes the jth column. We let
1 be the n x (p + 1) matrix with first column entries equal to 0 and, for j =2,...,p+ 1,

(Mlij = mij—1 where n; ;1 is as in assumption (A5). For the proofs of both theorems, we
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repeatedly use the bounds ||n ||z = Op(n'/?), [|G,[l2 = O(n'/?) and ||®¥||s = O(1). The
proofs of the first two bounds are straightforward. For Theorem 1, the last bound is an
assumption. For Theorem 2, we prove the last bound in Lemma 3. This lemma also provides
us with the bound ||[®~}||g = O(1). All lemmas appear in the Appendix. We now prove

Theorem 2. The proof of Theorem 1 is simpler and is sketched afterwards.

Proof of Theorem 2.

Proof of (i): From (4) with Q@ = &',

~

1 _ o) 1 _ .
Bg-1, = (;XT\II NI — Sh)X> - EXT\II I-8)Y

a1 _ .
= (Bg 1) I-EXT\II I -8%)Y. (16)

We first show that

Rewriting Bg-1, using X = G + n from equation (6), we obtain

1 1 1 1
Bg-1), = 5XT\Iﬂ(I - 8)G + EGT\Irl(I - S85)n+ EnT\Ifln - ﬁnﬂrlsgn. (18)

By Lemma 5 with v, =7, and w, = 1.5

—n' ¥y = Z—z (1 + Z cbk) )+ op(1). (19)

To complete the proof of (17), we show that the second and last terms in (18) are op(1) and

that

1XT\IJ—l(I - 86)G =
n

— (1 - ¢k> 9'g"" +op(1). (20)

Consider the (4, j)th component of the left side of (20), namely X [ ¥~ (I — 8%)G ,;/n =
(G +n)I® I — S)G/n. To analyze G} ¥~ (I — S5)G;/n, we apply Lemma 4 with
v, = G,; and w, = (I — S})G.;. By assumptions (A2) and (A3), v, satisfies the conditions

QQI\D mqt\:
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of Lemma 4. The components of w,, are bounded by (v) of Lemma 1 with v = G ;, so w,

also satisfies the conditions of Lemma 4. Thus
2

1 _ o2 & 1 .
EG’I\IJ I -85)G,==5 1= ¢ EGI(I - 85)G;+0(n)
u k=1
o? R ’ 1
__ e T T
= 1— ;qﬁk —5Gi11'G; +o(1)
02 R ’
:0—; 1—2% 9;9; +o(1)
u k=1

where the second line follows from (4i¢) of Lemma 2 with my; = g¢;_; and my = g;_; and
the last line follows from a Riemann integration argument. We now show that 5[ ¥ (I —
S:)G.;/n is op(1). When ¢ = 1, this component is 0. For ¢ = 2,...,p+ 1, this component

has mean 0 and variance

1 _ c Yi—1,i— - c
Var (Snlw (1= 576, ) = 222w (1 - 56
Eifl,ifl —11)2 c 2 1
< P (T - S)GI = 0O =o(1) (21

by (v) of Lemma 1 with v = G.;. Thus (20) holds.

To show that the second term in (18) is op(1), consider G} ¥~ (I — S;)n.;j/n. When
j =1, this component is 0. For j = 2,...,p+ 1, this component has mean 0 and variance
Yi1j1||(I-85) TG ,||2/n?. By Lemma 3 (iii), the components of ¥ ' G.; are bounded,
and so the variance is O(1/n) = o(1) by (v) of Lemma 1 with v = ¥ 'G.,.

Finally consider the (i, j)th component of the last term in (18). Since this component is

0 whenever 2 =1 or 7 = 1, we consider 4,5 = 2,...,p+ 1 and write

1 oty 1 _ . 1 .
‘;nI‘I’ S| < ~limill - |1 ® le-HSm.jHaz;-OP(H”Q)-O(l)-OP(h 12) = 0p(1).

For the above, we used the bound ||S;n ;|| = Op(h™'/2) from Lemma 6. This completes
our proof of (17).

Thus, on an X-set whose probability converges to 1,

~ 1
Bias(Bg-1,|X) = (Vg' +op(1)) - EXT\IFl(I - 8)m
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The formula for the asymptotic bias follows by studying X '®~'(I — S¢)m/n by the same

argument as in the proof of (20), but retaining the O(h?) term in Lemma 2 (777).

Proof of (ii): From (16) and (17), we have, on an X-set whose probability converges to 1,

3|

Var(By-14X) = == (V' +0,(1)) - (X WX /n) - (V' +0,(1)),

where W = ¥~ 1(I — §5)®(I — S5)"®~". The proof of (i) follows if we show that

1 o2 1
—XTWX = —; (1 + Z gzsk) )+ EGTWG + op(1)

and that G'WG/n = O(1). To show the first, use X = G + 7, and write
I o1 L T L T L L -1 I rg-1
- X' WX=-GWG+-GWn+-nWG+-n W-9 )n+-n ¥ n
n n n n n n

Since (19) holds for the last term, we must only establish that G Wn_;/nand [ (W — &~') 5 /n
are op(1) for all 4,5 =1,...,p+ 1. When j = 1, these terms are 0.

Consider GIWn,j/n, j > 1. This term is op(1) since it has mean 0 and variance

1 Y141 2'71,'*1
Var (1GTWa, ) = o WG < W16

Yo ~ . 1 B
< S G - (L (IS5l Gl = —O(h) - O(n)

by (iv) of Lemma 1, and thus the variance converges to 0.
Consider 1.} (W — \I’_l)n_j/n. When i = 1, this term is 0. When 7 = 2,...,p + 1, these
terms are op(1) since they can be bounded as

1

1
EWI (W - ‘I’_l) n.,;

ﬁnl (=S5 e — OIS + OIS US T )

. B 1 _ ¢
< AISimllz - [[® s - 1512 + lmallz -2 s - 11S5m.l12
L et T -
+ (ST 2 ([ - 1SR o
1 1
= EOP(HI/Q)OP(hfl/Q) t EOP(hil) = Op(n'/2h7'1%).

Here, we used Lemma 6’s bounds on ||S5"® 0 || and [|S$n,||;. Thus, the first equality
n (i7) holds.
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To establish the second equality in (4i), write
IGIWG ;| = [GLE (I - S;)¥(I-5S5)'¥ G,
< |I(I = 83) " TGill2 - || ®]]s - |(T = S5) " TGl = O(n)
by applying Lemma 1 (v) in the Appendix twice, once with v = ¥™'G.; and once with

v = U7'G,. Both ¥'G,; and ¥~'G,; satisfy the conditions of Lemma 1 (v), as their
components are bounded by Lemma 3 (i77).

Proof of (iii) : The proof follows easily from parts (i) and (i), by writing E <| |B\I,717h — B3 ‘X) =
|1Bias(By-+ 4l X)|[3+ trace { Var(By 1,/ X) }

Proof of Theorem 1. This proof is similar to that of Theorem 2, so is just sketched. The mod-
ification of the proof of (i) is straightforward. For the first equality in (ii), one shows that, on

an X -set whose probability converges to 1, VaT(,@Lh\X) = (02/n) (V' + 0,(1)) (X "WiX /n)-
(Vi'+0,(1)), where Wy = (I — S;)®(I — S5)". As in Theorem 2, we can show that
X"W;X/n =G W;G/n+ &9 + 0p(1). The only difference in the proof is that here

we study the terms ' (W — ¥)n and 5" ¥n instead of " (W — ¥ ')y and ¥ 'y.
The proof of the second equality in (74) and that of (i7i) are clear-cut modifications of the

corresponding proofs in Theorem 2.
Proof of Theorem 3. Dropping m’s and ,B"s subscript of €2, h write
™= S5(Y - X8) - S;X(B - A). (22)
Then the conditional bias of ™ given X is
Em|X)—m=—I - 8)m — S; X x Bias(B8|X).
We study the ith component of this conditional bias. By Lemma 2 (7)
(T - 8)m)]; = 2 @ [m"(z,-) _ / ") £2) dz] + o(h?)
0

for Z; € [h,1 — h] and is O(h?) for Z; ¢ [h,1 — h]. To analyze the sth component in the

second term in the conditional bias expression, we show that
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to get

[S¢ X x Bias(8|X)); = h? (Gi. — g*) b + 0, (h?).

vp(K)
2

To prove (23) write

E[8;X]; = [S5Glij = Gyj—[(I-57)Gli; = Gi;—[11" G ;/n)i+O(h?) = Gij—gj+0(1)+O(h?)

by first applying Lemma 2 (¢) with my = G.; and then using Riemann integration. We now

show that the variance of [S} X|;; converges to 0 uniformly in ¢ and j. Write

n

c - c - c 1 . 1
var ([S},Xi;) = var (Z[Sh]iknkj> = Z[Sh]?k %5 < X5 Co Z {E I{[i — k| < Cinh} + n

k=1 k=1 k=1
for some constants Cy and C;, by (7ii) of Lemma 1. Therefore, the variance of [S}; X];; is
O(1/(nh)) = o(1). This completes the proof of (23), and thus, the proof of the statements
concerning the asymptotic conditional bias of [m];.

We now study the conditional variance of [m]; via the conditional variances of the ith
components of the two terms in (22). To study the conditional variance of the first term’s ith

component, we use Corollary 1 of Francisco-Ferndndez and Vilar-Ferndndez (2001), which

states that

o0

() (pm) + 2Zp<k)> 0, ((nh)™).

2
o
var([Sp(Y — XB)i| X) = —5+—

(SK(Y = XB)LIX) = 7 1

Studying their proof, we see that this holds uniformly in i with Z; € [2h,1 — 2h] and that we
can bound var([S,(Y — X 83)];| X) by a constant over nh uniformly in ¢ with Z; ¢ [2h, 1—2h)].

Both of these results require the additional condition that Y -, k|p(k)| < co. To use these

X>.

We now show that the conditional variance of }_,[Si(Y — X B)];/n = O,(1/n), and thus

results for S} instead of S} write

var ([Sg(Y - Xﬂ)HX) = var ([Sh(Y - XpB)); — %Z[Sh(Y - Xp);

this term is negligible. Write

var (% SISu(Y - Xﬂ)]j|X> = 55 Y cou (Su(Y ~ XB)L [Su(Y - XB))y|X)

J 37
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= % Z Zcov ([Snlal(Y = XB))i, [Sulw[(Y — XB)]r| X)

Vs
o? , 52 ,
= 5 S SualSulywn(lt =) < 5 €3 [ol = 1))
g Ll L
for some C' not depending on i, by (i) of Lemma 1 and assumption (A3) on the design

density of the Z;’s. But

Lol =D < S Stk = O ) = o (nh) ).

Ly I=1 k=0
We complete the analysis of the conditional variance of [m]; by showing that the con-
ditional variance of [S}X (,@ — B)]i is Op(1/n), and thus negligible. First we write the
asymptotic variance of 3 from Theorem 1 or 2 as 02V, /n+ 0,(1/n) and let s/ denote the

ith row of S} X. By (23), s; = O,(1) and so

var ([SgX(,/B\ — ,8)]Z|X> = var [szT,/B\|X] =s, [7 + 0, (n—l)] s; = 0,(n7").

APPENDIX

Throughout the Appendix, suppose that S;j;, 4,7 = 1,...,n, are the local linear smoothing
weights defined at the end of Section 2. Also, let K be a kernel function as defined in (A4).
For z € [0,1] and h € (0,1/2], let:

v(K,z,h) = /(1/:)/’1 s'K(s)ds

and
Vl(Ka 2, h’)
(K, z, h)y(K, z,h) — v (K, z,h)?

Vi(K,z,h) =

LEMMA 1. Suppose that h = h,, satisfies assumption (A1) and that assumptions (A3) and
(A4) hold. Then the following hold.
(i) Forl=1,2,3, SuPpe(o,1/2 SUPsep0,1) |Vi(K, 2, h)| < oo,
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(it) There exists C > 0 so that, for all n sufficiently large, |S;;| < C-I1(|Z; — Z;| < h)/(nh)
foralli,j=1,...,n.
(7ii) There exists Cy and Cy independent of i, k and n such that

c ]- . ]_
|[Shlikl < Co %I{h—k\ gclnh}Jrﬁ _

(iv) The Frobenius norm of S5 satisfies ||S%||r = O(h™/?).

(v) Given Cy > 0, there exists C3 > 0 such that for any v = (vy,...,v,)" with |v;| < Ca, we
have |[(I—8%) v];| < C3 and |[(I—S%)v];| < C5 forallj=1,...,n. Thus|[(I—S5) v|3 <
nC3 and [|(I — S})v|[5 < nC3.

Proof. To establish (i), we bound V;(K,-,h) on each of the intervals [0, h], [h,1 — h] and
[1 — h,1]. First consider z € [0, h]. Then

f_la stK(s)ds
sup |Vi(K,z,h)| = sup |Vi(K,ah,h)|= sup - - . >
2€[0,h] a€[0,1] o0l 7 K (s)ds [~ K(s)ds — (La sK(s)ds)

1 E(X7)
sup — : ~
acio,1] [_ K(s)ds Var(X})

where X, has density K(s)/f_la K(u)du, s € [—a,1]. Clearly, inf,ejo1 f_la K(s)ds > 0.

Also, sup,¢(o E(X}) < 0o and infaepo 1y Var(XL) > 0. Thus, supye(g,1 /2 SUP,cjon [Vi(K, 2, h)| <
oo. Similarly, suppe(o1/2) SUPepi—n1] |Vi(K, 2, h)| < co. For z € [h,1 — h], ViI(K,2,h) =
E(X!)/Var(X,), which is finite.

The proof of (i7) follows directly from (i), the compactness of the support of K, and the

following standard result in smoothing. Uniformly in¢,j =1,...,n,
1 Zi— Z; Zy— Z;
= e - K,Z, h) — Vi(K, Z;, h)= J | -K | =—2|.
S0 = s [V 2~ Vil 2o 2B o i (2

The proof of (4i7) follows from (i) and assumption (A3) on the design density of the Z;’s.

Statements (iv) and (v) follow directly from (i74).

LEMMA 2. Let my and my be arbitrary functions having three continuous derivatives and
define my = (my(Z1),...,my(Z,))", 1 = 1,2. Suppose that h = h,, satisfies assumption (A1)
and assumptions (A3) and (A4) are fulfilled. Then the following hold.
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(i) Let B, (K, z,h) = (m"(2)/2) va( K, 2, h)Va(K, 2z, h) — v3(K, z, h)V1(K, z, h)] . Then uni-

formly in j=1,...,n,
(I — 85)m,]; = —h’ [Bm2(K, Zj, h) — —1/2 / ml dz] +0(h2)+£m2 0(h2)+%m2.
For j with Z; € [h,1 — h|,

(T — 85)ym), = —hz”( [ / m! dz] +o(h?) + %mz

(ii) If 1T my = 0, then ||(I — 8)m,4||2 = (nh4)
(i37) m{ (I — 8§)ma/n = —(h2/2)va(K)[[} mi(2)mis(2) f(2)dz — [y ma(2) f(2)dz -
fol my(2) f(2)dz] + o(h?) + m] 11T my /n.

Proof. For convenience, drop the subscript on m;. Using (i) of Lemma 1, we see that B,, is
uniformly bounded in the sense that there exists C* > 0 so that sup,(o,1/2) SUP,¢(o,1) | Bm (K, 2, h)| <
C*.

Write

(I-85)m = I—(I—llT/n)Sh}m: (I—117/n)(I - Sh)m+£m

By standard results in smoothing (see, for instance, the proofs of Theorems 1 and 4 in Fan

and Gijbels, 1992), [(I — Sy)m]y = —h?B,,(K, Z, h) + o(h?), uniformly in k = 1,...,n. So
[(I =117 /n)(I = Sp)m], = —h*Bu(K, Z;, h) +n2l ZB (K, Zy, h) + o(h?).

Since By, (K,Z;,h) = (1/2)vo(K)m"(z) for z € [h,1 — h] and is uniformly bounded, a

/m (2)dz + o(1).

Riemann integration argument yields

—ZB (K, Zy, h)

Thus, uniformly in j =1,...,n,

T

(I — 85)mg]; = -1’ [Bm(K, Z;,h) — %VQ(K) ./0 m”(z)f(z)dz] + o(h?) + lm

n
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and statement (i) follows.

The proofs of (7i) and (ii¢) are straightforward, using (7).

For the rest of the Appendix, we let €,..., €, be successive observations from an AR
process of finite order R satisfying assumption (A9). We denote the correlation matrix of
€1,...,€, by ¥. The lemma below shows that the spectral norms of ¥ and ¥ ! are bounded.
Furthermore, the lemma provides an explicit formula for ¥ !, taken from Lemma 1 in David

and Bastin, 2001.

LEMMA 3.
(i) The spectral norm of ¥ is bounded as n — oc.

(ii) The inverse of ¥ exists and is given by:

2
O¢

ol = = U'u-v'yj,

where U and YV are n x n lower triangular matrices defined as

(1 \ (0 \

-1
0
U= _¢R . . and YV =
0 —¢r

L0 06 a1 \ -1 —¢r 0 0 )

(iii) For any n-vector v, [¥'v]; is a linear combination of at most 1 + 2R + R? elements
of v, with coefficients depending on ¢+, ..., ¢r but not on n.

(iv) The spectral norm of ¥~ is bounded as n — oc.

Proof. Recall that ¥, ; = p(i — j). To prove the boundedness of ||¥||s use the symmetry of

¥ and a well-known result on spectral norms to get:
2

n 2 n—i 00
1®]ls < llrgegz; [@isl| = !112%;121:'[)(}1” <> lo(h)] < oo
j= =1—1 —00
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since there exist constants C > 0 and s € (0, 1) so that |p(h)| < Cs/ . Thus (4) follows. The
proof of (ii) follows by direct calculation. The boundedness of ||¥~!||s follows easily by

using the explicit expression for ¥,

In the next two lemmas, we will find it useful to write U as
U=1- ¢1u(1) — = ¢Ru(R) where [u(k)]i,j == I{’L = ] + k, 1 S ] S n — ]f} (24)

LEMMA 4. Let {v, = (vp1,---,Vnn) ,n > 1} and {w, = (W1, .., Wnp,) ' ,n > 1} be two

sequences of n-vectors. Suppose that there exists C such that the following conditions hold.
(1) maxi<j<p |Vn,j| < C for all n sufficiently large.
(i) Mmaxi<j<n—1|Un; — Vn 41| < C/n for all n sufficiently large.

(iii) maxi<j<p |wy;| < C for all n sufficiently large.

Then, as n — oo,

1 0'2 ’ v, w

T 1 € n Un —1
—v, ¥ w, = < 1—§ 10) +0 )
n " 0',3 ( =1 k) n (n )

Proof. For notational simplicity, we omit the subscript n. By (i7) of Lemma 3, we have

Uv)" (Uw) 2 (Vv)(Vw)

2
n o2 n

1
o T lw =
n

|Q
SN|M N

Clearly, the second term is O(1/n), by the sparseness of ¥V and the boundedness of the

components of v and w. Using (24) to study the first term, write
(WUo) (Uw) = [(I = dthpy =+ = o)) [(T = onlhy =+ — Sl ) w]
R R R
=v'w-— Z q&vau(T,c)w - Z ¢lvTu(l)w + Z ¢k¢lvTu&)u(l)w.
k=1 =1 k=1

We now show that v U ,w = v w + O(1), k =1,..., R. One can easily see that
(k)
n—k n—k k
UTU&)w = th Wi =V W+ Z (Vg — Vyyk) - Wepg — Z vy - Wy
=1 =1 =1
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The last term is O(1). The second term is also O(1) since |wyx| is bounded and |v; — vy x| <
C/n. A similar argument shows that v " Upw = v w+0(1) and v U UHw = v w+O(1),

completing the proof of the lemma.

LEMMA 5. Let (v;, w;), i > 1 be a sequence of independent and identically distributed bivari-

ate random vectors with E(v;) = E(w;) = 0, the variances of v; and w; finite, and 04, = the

T

covariance between v; and w;. Let v, = (vy,...,v and w,, = (wy,...,w,) . Then
(] 2 n ) y YN ) 7

1 o? f
ﬁ’U,TL‘I’_l'wn = 0—52 (1 + Z qbz) oww + 0p(1).
u k=1

Proof. We drop the subscripts n. Using Lemma 3 (i), the sparseness of ¥V and (24), write

v Ol = Z—Cz(UU)T(U'w) + O,(1)
ol | T - TeyT < T < ToyT
=5 [vTw =) awUpw - sw Upw+ Y dedrw Ujyw| +0,(1).
u k=1 I=1 kl=1
One can easily see that v"w/n and vTu(Tk)U(k)'w/n =Y pivwy/n, k=1,..., R, converge
in probability to o,, as n — oco. Furthermore, vTu(Tk)'w/n, k=1,....R, and v Uyw/n,

I =1,...,R, and v'U \Upw/n, k1 = 1,...,R, k # I, converge in probability to 0.
(k)0

Combining these results completes the proof.

LEMMA 6. In addition to assumption (A9), suppose assumptions (A1) and (A3)-(A5) hold.
Then, for anyi=1,...,p, ||SS ¥ n,|ls = Op(h /?) and ||Sin.,||s = Op(h1/?).

Proof. By Markov’s Theorem,
185" @~ |3 = Op (E(n; ¥~"'S,8, ®71n,))
=Y Op (trace(T~'S585T¥ ™))

= Op (/[ S;[IF) = O(lIS;|IF)

by (iv) of Lemma 3 applied to v equal to a column of Sj. The first bound in the lemma now

follows directly from (iv) of Lemma 1. The second bound of the lemma is proven similarly.
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Figure 1: Data simulated from model (1) for p = 0,0.4,0.8 and m(z) = my(z). The first
row shows plots that do not depend on p. The second and third rows each show plots for

p=20,04 and 0.8.
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Figure 2: Point estimates (circles) and 95% confidence interval estimates (segments) for the
true coverage achieved by three different methods for constructing standard 95% confidence
intervals for the linear effect 4; in model (1) with p = 1. The horizontal axis gives the
tuning parameter [ = 0,1,...,10. Estimates were obtained with m(z) = ma(z) and p = 0 (left

column), p = 0.4 (middle column) or p = 0.8 (right column).
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Figure 3: Average lengths of three types of standard 95% confidence intervals for the linear
effect 3, = ¢" B in model (1) with p = 1 as a function of / = 0,1,...,10. Circles and stars
denote average lengths of intervals based on estimators of the form CT,B 1.n> With h chosen by
the non-asymptotic plug-in method and the global empirical method, respectively. Squares
denote average lengths of intervals from Speckman-based estimators. Lengths were computed

with p =0,0.4,0.8 and (a) m(z) = my(2) or (b) m(z) = ma(2).
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Figure 4: Pairwise scatter plots of log mortality, PM10, temperature, relative humidity and

day of study.
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Figure 5: Standard 95% confidence intervals for (3;, the linear PM10 effect in model (15),
as a function of the tuning parameter [, where [ = 0,1,...,10. Top: The non-asymptotic

plug—in method for choosing h. Bottom: The global empirical method for choosing A.
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