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ABSTRACT

To investigate the health effects of air pollution via a partially linear model, one must choose the
correct amount of smoothing for accurate estimation of the linear pollution effects. This choice
is complicated by the dependencies between the various covariates and by the potential residual
correlation. Most existing approaches to making this choice are inadequate, as they neither target
accurate estimation of the linear pollutant effects nor handle residual correlation. In this paper,
we illustrate two new adaptive and objective methods for determining the appropriate amount of
smoothing. We construct valid confidence intervals for the linear pollutant effects; these intervals
account for residual correlation with minimum input from the user. We use our inferential methods
to investigate the same-day effects of PM10 on daily mortality in two data sets for the period 1994
to 1996: one collected in Mexico City, an urban area with high levels of air pollution, and the
other collected in Vancouver, British Columbia, an urban area with low levels of air pollution. For
Mexico City, our methodology does not detect a PM10 effect. In contrast, for Vancouver, a PM10
effect corresponding to an expected 2.4% increase (95% confidence interval ranging from 0.0% to

4.7%) in daily mortality for every 10 ug/m? increase in PM10 is identified.

KEYWORDS AND PHRASES: air pollution; bandwidth selection; generalized additive model;
mortality; partially linear model; particulate matter; residual correlation; seasonal confounding;

smoothing



1 Introduction

Many community-level time series studies have provided evidence that air pollution has adverse
health effects on humans (see, for instance, Pope et al., 1995, Goldberg et al., 2003, and Bell et al.,
2004). Disentangling the association between air pollution and the health outcome of interest is a
delicate problem. This association may be confounded by highly correlated factors such as season,
temperature and relative humidity, and may also be masked by the correlated nature of the time
series response.

Various statistical models can be used to describe the relationship between air pollution and the
health outcome of interest (e.g. daily non-accidental mortality rate), adjusted for relevant seasonal
and weather confounders. The most widely used in recent years have been generalized additive
models (GAM); see, for example, Schwartz (1994), Dominici et al. (2002b), Ramsay et al. (2003a,
2003b) and Touloumi et al. (2004). In a GAM model, the effects of the pollutants of interest on
a suitable transformation of the mean response are typically presumed to be linear for the sake of
interpretation, whereas those of the remaining covariates (e.g. day of study, temperature, relative
humidity) are often presumed simply to be of unspecified smooth form. The degree of smoothing
for estimating the effects of these covariates must be specified when fitting a GAM model.

Inference about the linear air pollution effects in such a GAM model is the primary objective.
Therefore, the choice of the degree of smoothness of the estimated smooth effects should be informed
by this objective. In addition, this choice should account for the dependencies between the various
covariates in the model and for potential residual correlation. Most smoothing choice approaches
in the air pollution literature focus on different objectives, such as doing well at estimating the
smooth effects or minimizing the amount of residual correlation. Recently, Dominici et al. (2004)
and Peng et al. (2006) developed methods targeted at choosing the right degree of smoothness for
accurate estimation of the linear air pollution effects. However, to our knowledge, no attempts have
been made to adapt these methods to situations where residual correlation is present.

In the context of investigating the health impacts of PM10, Peng et al. (2006) study some of the
most common methods for choosing the amount of smoothing, including a simplified version of the
mean squared error minimization procedure of Dominici et al. (2004), which they call the GCV-

PM10 method. This method, designed to eliminate seasonal confounding, chooses the amount



of smoothing by minimizing a generalized cross-validation criterion intended to assess how well
the pollutant series of interest can be predicted by a smooth function of day of study. Using
simulated data, Peng et al. (2006) show that the GCV-PM10 method outperforms other methods
they consider, in the sense of producing estimated pollutant effects with lower mean squared errors.

As we shall see, the GCV-PM10 method fails to provide a suitable choice of amount of smoothing
for the two data sets considered in this paper. We will describe and illustrate new methodology for
choosing the appropriate amount of smoothing to achieve accurate estimation of the linear effects in
a GAM model containing a single nonparametric smooth term when residual correlation is present.
Ghement and Heckman (2006) investigated some of the asymptotic properties of this methodology
and conducted simulation studies of the finite sample behavior. The need to account for residual
correlation is emphasized by Schwartz (2006).

To illustrate the importance of the choice of degree of smoothness, we refer to a data set
collected in Mexico City over a period of three years, from January 1, 1994 to December 31, 1996,
that is discussed in more detail in Section 5. The data consist of daily counts of non-accidental
deaths and daily levels of ambient concentration of PM10 (ug/m?), temperature (°C) and relative
humidity (%). As seen in Figure 1, the daily counts of non-accidental deaths and the daily levels
of PM10 show pronounced annual patterns, which peak at roughly the same time. The daily
levels of temperature and relative humidity also exhibit strong annual patterns. Note that the
concentrations of PM10 in Mexico City in this study were quite high: the 50th and 90th percentiles
of daily PM10 concentrations were 63 and 96 pg/m3, respectively. Also, the number of daily
non-accidental deaths ranged largely from 90 to 130 per day.

Preliminary model selection, detailed in Appendix B, suggests that an adequate GAM model
for the Mexico City data is:

log(Dy) = Bo + BrPMe +m(t) + foT; + BsHy + €, t = 1,..., 1096, (1)

where Dy is the observed number of non-accidental deaths in Mexico City on day t, and PM;, T;
and H; denote the daily measures of PM10, temperature and relative humidity, respectively. Model
(1) is referred to as a partially linear model as it contains only one smooth nonparametric effect,

m. A detailed exposition of partially linear models is provided by Hérdle et al. (2000).



Figure 2 illustrates the impact of the amount of smoothing used for estimating the seasonal effect
m in model (1) on 95% confidence intervals for 3;. These intervals are similar to those obtained
by software typically used for analyzing this type of data. In particular, the standard errors used
to evaluate these 95% confidence intervals do not account for possible error correlation. Each of
these confidence intervals is centered about a local linear backfitting estimate for 31, computed as
described in Section 2.

Figure 2 shows, in a dramatic fashion, that changing the amount of smoothing for estimating
m greatly affects the inferences on i, the short-term PM10 effect on log mortality. The amount of
smoothing is determined by a bandwidth, but can be translated into an equivalent number of degrees
of freedom. Large bandwidths, which correspond to few degrees of freedom, lead to the conclusion
that the data provide strong evidence in favour of a PM10 effect on log mortality in Mexico City,
after adjusting for seasonal and weather confounding. In contrast, with smaller bandwidths, the
data do not provide evidence in support of a PM10 effect. The sensitivity of conclusions to the
amount of smoothing — even when ignoring potential residual correlation — reinforces the need to
make this choice in an objective fashion to ensure valid inferences on the PM10 effect.

Our implementation of the GCV-PM10 method of Peng et al. (2006) yields too small a choice
of bandwidth for the Mexico City data. Indeed, Figure 3 shows that the GCV-PM10 method for
a local linear kernel regression smoother specifies the smallest amount of smoothing considered,
resulting in a predicted PM10 series that tends to interpolate the PM10 measurements. Using the
GCV-PM10 method with other smoothing methods instead of local linear kernel regression yields
similar overfitting.

The remainder of the paper is organized as follows. Section 2 describes our proposed model,
a partially linear model with correlated errors, together with a method for estimating the linear
and smooth effects in this model. Section 3 presents adaptive methods for choosing the degree
of smoothness of the estimated smooth effect when accurate estimation of the linear effects is
the objective. Section 4 provides a method for constructing approximate confidence intervals for
the linear effects of interest. Sections 5 and 6 apply this methodology to the analysis of two air
pollution/mortality data sets, including the data set collected in Mexico City. The paper concludes

with a brief discussion.



2 Partially Linear Models with Correlated Errors

Given the data (Y;, Xy5,t), t =1,...,n,5 =1,...,p, where the ¥; are measurements on a continuous
response (e.g. log mortality) and the Xy, ..., X, are measurements on p covariates (e.g. PM10,

temperature, relative humidity), a partially linear model with correlated errors is given by:
Y;g:ﬁ0+ﬁ1Xt1—I-"'—I—ﬁpti—l-m(t)—}—Et,t:1,...,’I’L. (2)

Here, B = (Bo, b1, - - - » ﬁp)T is an unknown parameter vector, m is an unknown, smooth, real-valued
function and the error terms satisfy E(e;) = 0, Var(e) = 02 > 0 and Corr(e,ep) = ¥yp. To
ensure identifiability in model (2), we assume that m satisfies the restriction > ;' ; m(t) = 0. The
methodology to be described applies to estimating linear combinations of the linear effects, but our
focus in this paper is on estimating (1. Thus, we treat the smooth effect m and the potential error
correlation as nuisances.

To estimate (31, we employ the backfitting algorithm of Hastie and Tibshirani (1990). The algo-
rithm uses an iterative estimation scheme to simultaneously estimate 3 and m = (m(1),...,m(n))".
The choice of smoothing method used for estimating m determines the smoother matrix S ap-
pearing in the algorithm; this matrix is indexed by the smoothing parameter A which controls the
degree of smoothness of the estimated m. We use local linear kernel regression; see Appendix A
for the definition of Sf in this case. In the remainder of this paper, h will be referred to as a
bandwidth.

We refer to the resulting estimators of 3 and m, denoted by [Aih and my,, as local linear

backfitting estimators. These estimators are the fixed points of the backfitting equations:

By =(X"X)' X (Y —my),

my, = S5(Y — XB,),

where Y = (Y1,...,Y,)" and X is the n x (p + 1) design matrix corresponding to the parametric
part of model (2).
3 — . . . ~(k (k=
Usually, 3;, and my, are found by iterating the updating steps ,8; ) (XTX)_lXT(Y—mELk 1))

—~ ~(k . . . . o —
and mglk) =S5y - X ,62 )) over k. However, iteration is not required to compute 3; and my,.



Straightforward algebraic manipulation of the backfitting equations yields the following explicit

expressions for these estimators:

Br=(X"(I-S)X)"' X" (I-S{)Y = MY, 3)

my = S5(I— XM,Y,

provided the (p41) x (p+1) matrix X " (I —8%)X is invertible. If this condition holds, the solution

is unique.

3 Choosing the Amount of Smoothing

Selecting the appropriate bandwidth A for computing the estimator of 31, denoted Bl,m is crucial.
Ghement and Heckman (2006) show that, in the presence of error correlation and dependencies
between the linear and smooth components of the model, the ‘optimal’ h for estimating (p is
smaller than that for estimating m. Opsomer and Ruppert (1999) obtained a similar result for
the case when the errors are uncorrelated. Peng et al. (2006) also illustrate the need for under-
smoothing via simulations and point out that this should not be interpreted as a problem, but as a
“fact of semiparametric life of which the practitioner should be keenly aware”. Adaptive methods
devised for accurate estimation of m, such as cross-validation, are unlikely to yield a satisfactory
choice of amount of smoothing for accurate estimation of (3.

To choose h values appropriate for the estimation of (31, we will use two of the adaptive band-
width selection methods developed and recommended by Ghement and Heckman (2006) and dis-
cussed in Section 3.2 below. Both methods select h to minimize an estimator of the conditional
mean squared error of BLh, given X. Both methods require preliminary estimators of m, o2 and

W, described in Section 3.1.

3.1 Preliminary Estimation of m, ¢? and ¥

Our preliminary estimators of m, 02 and ¥ depend on a bandwidth b chosen to yield accurate

estimation of m. This bandwidth b is not to be confused with the bandwidth h of Section 3.2,



which is chosen to achieve accurate estimation of (.

We estimate m via my, the local linear backfitting estimator with bandwidth b chosen via
cross-validation, modified to account for possible error correlation. Specifically, if [ is a positive
integer quantifying our belief in the extent of the serial correlation, we take the bandwidth b to be

the minimizer of the leave-(2l + 1)-out cross-validation criterion:

MEvil) = 13 (v - X7By - )

t=1

Here, ,B’b is the local linear backfitting estimator of 3 obtained from all the data and ﬁ%l()_t; D (t) is

the local linear estimator of m(t) computed from the ‘data’ (¢, Yy — X;Bb) for which [t — | > [.
An explicit expression for mlH (t) can be found in Ghement and Heckman (2006).

We use m;, and B’b = (XTX)"'XT(Y —my) to estimate 02 and ¥, as follows. We assume that
the errors in model (2) are realizations from a covariance-stationary autoregressive process of order
R, having mean 0 and variance o2. We first evaluate the residuals €, = Y — X [Ai’b — my,. Next,
we use €, to estimate R via the finite sample criterion developed by Broersen (2000). We then

estimate o2 and the autoregressive parameters in ¥ via Burg’s algorithm, described, for instance,

in Brockwell and Davis (1991).

3.2 The Plug-In and Global Empirical Methods

The two methods for choosing h discussed here involve estimating MSE(Z;L;L | X) = Bias? (Bl,h | X))+
Var(§17h|X ) and then minimizing this as a function of h via a search over a grid of h values, H.

Note that, by (3), Bl,h = cT,Bh =c' MY, with ¢ = (0,1,0,...,0)", so
Bias(Bp|X) = ¢ Mym, (4)
and

Var(Bi a1 X) = ol M ¥ M]c. (5)



Both methods estimate the conditional variance of Bl,h by replacing 02 and ¥ in (5) with the
estimates from Section 3.1 but they differ in how they estimate the conditional bias of Bl,h-

The plug-in method estimates the bias by replacing m in (4) with m; from Section 3.1.

The global empirical method is a modification of the empirical bias bandwidth selection method,
developed by Opsomer and Ruppert (1999) in the case of uncorrelated errors. It estimates the bias

using an empirical modelling approach, inspired by the fact that, as h — 0 and n — oo,

T
EBip|X) ~ag+ Y ah, (6)
t=2
where ag = (1 and a¢,t = 2,...,T, are unknown constants. In this approach, the bias is estimated

by fitting the model (6) to the ‘data’ {(h,al’h) : he H’} using ordinary least squares. This

results in estimated coeficients ag, do, ..., a7 and an estimator for the bias as a function of h:
- . T
Bias(f1,4|X) = E(Bip| X) —Go = Y _a;h'.
t=2

In practice, we take H’ to be the same as the H used in the grid search.

The global empirical method may do a better job of estimating the conditional bias of Bl,m as
it does not rely on a preliminary estimator for m. However, this method requires the specification
of T in the expansion (6) and a range of h values, H’, to be used in the least squares fitting step. In
practice, the choice of H' has not been a problem. Both methods depend on [, the tuning parameter
in the modified cross-validation criterion used for computing the preliminary estimators 7, 52 and
. In their simulations, Ghement and Heckman (2006) found both methods to perform well for

values of [ that are not too close to 0.

4 Inference for 5,

We propose to conduct inference on 31 based on the approximate 95% confidence interval:

Bin £ 2a/2SE(Bipl X), (7)

10



where @(ElﬂX ) is the square root of the plug-in estimator of the conditional variance in (5) and
h is chosen via one of the bandwidth selection methods of Section 3. Here @(B”JX ) is computed
with the preliminary estimators m,, 62 and W of Section 3.1 because these estimators are obtained
using the bandwidth b optimized for accurate estimation of m.

This confidence interval does not account for the uncertainty associated with the data-dependent
choice of h and the estimation of the error correlation structure. Nonetheless, Ghement and Heck-
man (2006) show that this method has good coverage properties in their simulations.

In the next two sections, we apply this inferential methodology to the analysis of two data sets:
the Mexico City data already discussed and a similar set of data from Vancouver to be introduced
in Section 6. Our goal is to determine if the pollutant PM10 has a significant same-day effect on

mortality in these cities after controlling for seasonal and weather confounding.

5 Analysis of Mexico City Data

The Mexico City mortality data were obtained from the Instituto Nacional de Estadistica Geografia
e Informatica. The air quality data were obtained from the Centro de Cémputo de la Direccion de
Prevencién y Control Contra la Contaminacion, México D.F. During the study period, the moni-
toring network included 8 stations for PM10 and 10 stations for temperature and relative humidity
(5 of these were PM10 stations) operating within Mexico City. PM10 (ug/m?), temperature (°C)
and relative humidity (%) were recorded on an hourly basis. For each of these variables, missing
hourly data were imputed as described in Vedal et al. (2003). These hourly data were converted to
daily averages at each station and then averaged across stations to produce the covariates used in
our analysis.

The focus of our analysis is to conduct inference about 31, the linear PM10 effect on log mortality
in Mexico City in model (1). We estimate (3; via 317;1, the local linear backfitting estimate of 3y
defined in Section 2, with h values chosen via the plug-in and global empirical methods of Section 3.
Both methods require preliminary estimation of m, 02 and .

We obtain the preliminary estimates for m, ¢ and ¥ as described in Section 3.1, with the
tuning parameter [ of the leave-(2] 4+ 1)-out cross-validation taking on the values 0,1,...,10 to

study sensitivity to this choice. For each [, the bandwidth b minimized the leave-(2] 4+ 1)-out

11



cross-validation criterion over the range 7 to 365 days. Figure 4 suggests that [ = 0 and 1 yield
under-smoothed estimates of m (the selected bandwidths were 16 days), so we focus on values of
[ from 2 to 10 (for which the selected bandwidths varied between 34 and 59 days). The order of
the autoregressive process fitted to the corresponding model residuals was estimated as R = 0 for
l=2,...,7 R=2for]=8and 9, and R = 3 for [ = 10.

The preliminary estimates for m, o2 and ¥, depending on [ = 2,...,10, are used to estimate
MSE (317h|X ) by the global empirical and plug-in methods. For the global empirical method, we
take T' = 4 in the expansion (6). To specify the grid H' = H of h values for the global empirical
method, we assessed the quality of the global polynomial fits produced by this method for H’s of
the form {7,8,..., N}, where N = 30(30)210, 250 or 548. With 7" = 4, all values of N between 90
and 250 provided different choices of bandwidth but essentially the same conclusions regarding the
linear PM10 effect (1; the results presented below correspond to N = 90. We then used this same
grid for our grid search minimization of the estimate of M SFE (Bl,h’X ). For these data, the plug-in
method is also not very sensitive to the range of the grid for the grid search, as long as this range
is reasonably wide. We therefore used the grid H = {7,8,...,90} for both methods.

Figure 5 shows the estimated squared bias, variance and mean squared error curves calculated
by the plug-in and the global empirical methods for different values of [. The plug-in method yields
h =24 days for [ = 2,...,9 and h = 22 days for [ = 10. The global empirical method yields h = 38
days for all [. Thus, for both methods, the resulting choices of h are remarkably stable as [ varies
from 2 to 10, although the plug-in choices are smaller than the global empirical choices.

Figure 6 shows the corresponding 95% confidence intervals for 3; obtained from formula (7).
Despite their differing choices of bandwidth, the two methods lead to very similar point estimates
and confidence intervals. The standard errors here are comparable with those in Figure 2, reflecting
only a modest degree of correlation in the residuals once the systematic components in the data
have been taken into account. For this data set, the choice of [ has little influence on the results,
as the preliminary estimates for o2 and ¥, and both types of bandwidth choices, are affected very
little by the specification of [.

Figure 6 provides no indication of a same-day PM10 effect on log mortality. Further, the
magnitude of the PM10 effect is reasonably precisely determined; the range of plausible values

indicated by these confidence intervals corresponds to changes in daily mortality of roughly —0.4%
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to 40.4% for an increase of 10 jg/m? in the daily concentration of PM10.

6 Vancouver Data

This section presents the analysis of an air pollution/mortality data set collected in Vancouver,
British Columbia, from January 1, 1994 to December 31, 1996. The data consist of daily counts
of non-accidental deaths and daily levels of ambient concentration of PM10 (ug/m?), temperature
(°C), relative humidity (%), barometric pressure (kilopascals) and rain (% hr/day). The mortality
data were obtained from the BC Vital Statistics Agency through the Centre for Health Services
and Policy Research at the University of British Columbia and the air quality data were obtained
from the Greater Vancouver Regional District. PM10 is a daily average across 10 monitoring sites,
temperature is a daily average across 16 sites, relative humidity and barometric pressure are daily
averages across 7 sites, and rainfall is a daily average across 8 sites. Additional details about the
methods used to collect and pre-process these data can be found in Vedal et al. (2003).

The scatterplots of all variables versus day of study display annual cyclical patterns (Figure 7).
The concentrations of PM10 in Vancouver during the study were much lower than in the Mexico
City data: the 50th and 90th percentiles of daily PM10 concentrations were 13 and 23 ug/m?>,
respectively. The daily total numbers of deaths were also lower than in Mexico City, ranging
largely from 30 to 40 per day.

Preliminary model selection, outlined in Appendix B, identifies the following partially linear

model as appropriate for the Vancouver data:

log(Dy) = Bo+ B1- PMy+m(t)+ Bo- Ty + Bs - Hi+ Ba- P+ G5 R+ e, t =1,...,1096, (8)

where Dy is the number of non-accidental deaths in Vancouver on day ¢, and PMy, T;, Hy, P, and
R; denote daily measures of PM10, temperature, relative humidity, barometric pressure and rain,
respectively.

Figure 8, constructed by the same methods as Figure 2, illustrates the impact of choice of
bandwidth for estimating the seasonal effect m in model (8) on estimation of 1, the linear PM10

effect in this model. The fluctuation of the confidence intervals here is not nearly as dramatic as
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in Figure 2. For all values of the bandwidth considered, these naive confidence intervals indicate
reasonable evidence of a PM10 effect in Vancouver.

Figure 9 shows that the GCV-PM10 method of Peng et al. (2006) once again results in too
small a value of h, which will be inappropriate for estimating 3 accurately. To choose the correct
amount of smoothing for accurate estimation of (31, we apply the same methodology utilized for
the Mexico City data. We implement this methodology with [ = 0,1,...,10, H = {7,8,...,90}
and T = 4 — just as for the Mexico City data.

Examining plots (Figure 10) of the preliminary estimates of m, obtained with leave-(2{+ 1)-out
cross-validation choices of smoothing for [ = 0, 1,. .., 10, suggests that { = 10 (for which the selected
bandwidth was roughly 121 days) yields an over-smoothed estimate of m, so we concentrate on
values of [ from 0 to 9 (for which the selected bandwidths varied between 36 and 52 days). For
all values of [ in this range, the order R of the autoregressive process fitted to the corresponding
model residuals is estimated to be zero.

Figure 11 displays the estimated squared bias, variance and mean squared error curves used
for determining the plug-in and global empirical choices of bandwidth for Bl,m the local linear
backfitting estimate of 3. Comparing Figure 11 to Figure 5 indicates that the choice of bandwidth
for the Vancouver data is not as straightforward as for the Mexico City data. For the Vancouver
data, the global minimizer of the mean squared error curves produced by each method is the largest
value of h considered, 90 days. Visual inspection of the corresponding my, suggests h = 90 is larger
than desired. Therefore, for the global empirical method, we choose the first local minimizer of the
mean squared error curves, as suggested by Ruppert (1997); the resulting choices of bandwidth are
39 days for all [ from 0 to 9. No such adjustment is available for the plug-in method, which fails to
select an appropriate choice of bandwidth for these data. We take our plug-in choices of bandwidth
to be 90 days for all [ from 0 to 9.

Figure 12 shows the corresponding 95% confidence intervals for (3; obtained from formula (7).
Despite the considerably different choices of bandwidth for this data set, the two methods lead to
essentially identical point estimates and confidence intervals. Although the PM10 effect is much less
precisely determined here than was the case for the Mexico City data set (the estimated standard
errors here are almost 6 times larger), Figure 12 indicates that, for all values of [ considered, there

is reasonable evidence of a same-day PM10 effect in Vancouver. We conclude that increases in
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the daily concentrations of PM10 are associated with increases in daily mortality in Vancouver.
Specifically, for a 10 pg/m? increase in the daily concentration of PM10, we estimate an expected
2.4% increase in the daily mortality rate with 95% confidence interval ranging, roughly, from 0.0%
to 4.7%.

7 Discussion

To investigate the health effects of air pollution via a partially linear model, one must choose the
correct amount of smoothing for accurate estimation of the linear pollution effects. This choice
is complicated by the dependencies between the various covariates and by the potential residual
correlation.

Most methods available in the literature fail to choose the appropriate amount of smoothing
because they focus on inadequate objectives such as accurate estimation of the smooth effect or
minimization of the amount of residual correlation. The GCV-PM10 method of Peng et al. (2006),
intended to overcome this deficiency, was identified as ‘best’ amongst a number of existing methods
on the basis of a simulation study. Unfortunately, in the two data sets investigated here — one
collected in Mexico City, an urban area with high levels of air pollution, the other collected in Van-
couver, an urban area with low levels of air pollution — this method failed to choose an appropriate
amount of smoothing.

We used two adaptive and objective methods of Ghement and Heckman (2006) for determining
appropriate choices of amount of smoothing. These methods produced essentially identical results
within each data set. Unlike other methods available in the literature, these methods specifically
target accurate estimation of the linear pollutant effects and appropriately take into account residual
correlation.

We also constructed valid confidence intervals for the linear pollutant effects. These intervals
have the feature that they account for residual correlation with minimum input from the user.
For Mexico City, our results suggested the absence of a same-day PM10 effect. In contrast, for
Vancouver, we found evidence of a same-day PM10 effect. The disparity of the results for the two
cities is not overly surprising in view of the considerable variation in such effects across geographical

locations, possibly due to the heterogeneous geographical nature of PM10, previously reported in
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the literature; see, for example, Dominici et al. (2002a, Figure 2), Touloumi et al. (2004, Figure 3)
and Welty and Zeger (2005, Figure 3). It is interesting to speculate why the estimated same-day
PM10 effect on mortality in Vancouver, an urban area with low levels of air pollution, is rather

larger than typical PM10 effects that have been reported previously.
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Appendix A: Definition of Local Linear Smoother Matrix S5

Local linear kernel regression is an effective method for estimating a smooth regression function
wu(t) of unspecified form from data (¢, R),t = 1,...,n, where E(R;) = u(t). See, for instance, Fan
and Gijbels (1992) and Fan (1993). Local linear kernel regression estimates p(tp) by a weighted
average of the observations within the smoothing window (to — h, to+h), where h is a user-specified
parameter known as the bandwidth. The weights depend on a kernel function K chosen so that

most weight is given to those observations with ¢ closest to .

If 7i(-) is the local linear kernel regression estimator of y(-), then we can write (7i(1),...,7(n))" =
Si(R1,...,R,)", where S}, is an n x n hat matrix whose (¢,t')-th element is given by:
_ K= t/)/h) [Sn2(t) = (£ =) Sna(t)]
[Shley = :
n.2(t)Sn,0(t) = Sna(t)?

Here,

n g4
t) = ZK(t ht >(t—t”)l, 1=0,1,2.

=1

The smoother matrix S} appearing in the backfitting algorithm described in Section 2 is the
centered version of the hat matrix Sj,; that is, 8§ = (I —117 /n)S},, with I being the n x n identity

matrix and 1 being an n x 1 vector of ones.
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In all analyses reported in this paper, we used the Epanechnikov kernel, given by

B/4)(1—wu?), if |u| <1;
0, if |ul > 1.

K(u) =

Appendix B: Preliminary Model Selection

In what follows, we provide an overview of our preliminary model selection for the two data sets
considered.

Our models treat log mortality as a continuous response and assume the relationship between
PM10 and log mortality is linear for ease of interpretation. In all models, the seasonal effect is
assumed to be smooth, of unspecified form. The models differ in their specification of the weather
effects confounding this relationship.

All models were fitted using the S-Plus function gam with locally weighted linear regression
(loess) as the smoothing method and the more stringent convergence parameters recommended by
Dominici et al. (2002b). Loess differs from local linear kernel regression in that it uses a span
instead of a bandwidth to control the size of the smoothing window. The span, expressed as a
fixed proportion of nearest neighbors, determines the proportion of data points to be included in
the smoothing window when performing local linear regression.

Competing models were compared via approximate F-tests, with the residual degrees of freedom
obtained from the trace of the hat matrices associated with the model fits (Hastie and Tibshirani,
1990). Strictly speaking, the F-tests are valid only if the error terms in these models can be regarded
as independent and identically distributed, having a normal distribution with mean 0 and constant

variance ¢2; hence these tests provide only rough guidance in our context.
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B.1 Mexico City Data

The first model we considered for the Mexico City data was a partially linear model, incorporating

a linear PM10 effect 51 and a smooth seasonal effect m of unspecified form:

log(Dy) = Bo + B1PMy +m(t) + e, t=1,...,1096. 9)

To identify a reasonable range of spans for estimating m by a univariate loess smoother, we fitted
model (9) with spans ranging from 0.05 to 0.50 in increments of 0.01 and examined plots of the
fitted m and corresponding model residuals. This suggested spans in the range 0.09 to 0.12, as
spans smaller than 0.09 led to visually noisy fits, while spans larger than 0.12 led to over-smoothed
fits that failed to reflect important seasonal features of the data (Figure 13). The reduction in
residual variability achieved by including m in the model decreased from 47.9% to 46.4% as the
span increased from 0.09 to 0.12. The degrees of freedom expended to achieve this reduction
decreased from 19.9 to 14.7 as the span increased from 0.09 to 0.12.

The second model we considered for the Mexico City data was:

lOg(Dt) = ﬂo + ﬂlPMt + m(t) + ml(ﬂ, Ht) + €, t= 1, ceey 1096, (10)

with m; a smooth bivariate weather surface. We compared model (10) to model (9) using approx-
imate F-tests, allowing the span s for estimating m to range between 0.09 and 0.12, and the span
s1 for estimating m; to range between 0.05 and 0.50, in increments of 0.01. As seen in Figure 14,
for s = 0.09 the resulting p-values were consistently greater than 0.40 (the reduction in residual
variability associated with the addition of m; decreased from 7.6% to 0.8% and the degrees of
freedom consumed to achieve this reduction decreased from 79.6 to 9.4 as sy increased from 0.05
to 0.50). Other values of s yielded similar results.

As my contributed very little to model (10), we found no apparent need to include either
temperature or relative humidity in the model. However, as these weather variables are typically
included in models for air pollution/mortality data, we preferred model (1) to model (9); the cost
of this expansion of the model is modest — only two degrees of freedom. Residual plots for fits of

model (1) with spans s for estimating m of 0.09 (Figure 15), 0.10,0.11 or 0.12 revealed no systematic
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structure, suggesting that the PM10, seasonal and weather components of the model account for
the structure in the data reasonably well. The extent of the serial correlation in these sets of
residuals was small (the lag 1-4 serial correlations varied between 0.02 and 0.09 for the different
values of s; see Figure 16 for s = 0.09), likely due to the fact that most of the short-term temporal
variation in the log mortality counts is accounted for by m, the seasonal component. Comparing
to the extent of serial correlation in the Mexico City raw log mortality counts supported this belief
(the lag 1 serial correlation was about 0.54 and the serial correlations diminished quite slowly with

increasing lag, as seen in Figure 17).

B.2 Vancouver Data

Our preliminary model selection for the Vancouver data considered the models:

log(Dy) = o+ B1 - PM, +m(t) + e, (11)
log(Dy) = Bo + B - PMy + m(t) + my(Ty, Hy) + €, (12)
log(Dy) = Bo+ b1 - PMy+m(t) + B2 - Ty + B3 - Hy + €4, (13)
log(Dy) = o + Br- PMy+ m(t) + B2 - Ty + B3 - He + ma(Fy, Ry) + €, (14)

as well as model (8). Here, m is a smooth seasonal effect of unspecified form and m; and mg are
smooth bivariate surfaces of unspecified form. As for Mexico City, t =1,...,1096.

We first fitted model (11) to the Vancouver data. Using the same approach as for the Mexico
City data, we determined that the seasonal effect m in this model could be reasonably estimated
with spans s in the range 0.10 to 0.20 (Figure 18). The resulting estimates of m consumed degrees of
freedom decreasing from 17.9 for s = 0.10 to 8.7 for s = 0.20. The reduction in residual variability
achieved by including m in the model decreased from 17.4% to 15.3% as s increased from 0.10 to
0.20. Note that the seasonal component is much stronger in Mexico City, as is also evident from

Figures 1 and 7.
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Next, we compared model (12) to (11) via approximate F-test conducted with spans s for
estimating m ranging between 0.10 and 0.20 and spans s; for estimating m; ranging between
0.32 and 0.50, in increments of 0.01 (spans s; smaller than 0.32 were deemed inappropriate for
estimating the surface mq, as they yielded visually rough surfaces that consumed high numbers of
degrees of freedom: df > 14.9; Figure 19 displays the estimated weather surface m; for s = 0.15
and s1 = 0.05,0.15,0.30 and 0.50). For all values of s and s; considered, the resulting p-values were
larger than 0.30. For s = 0.15, the reduction in residual variability associated with the addition
of mq decreased from about 1.2% to about 0.8% as s1 increased from 0.32 to 0.50; the degrees of
freedom expended to achieve this reduction decreased from 13.6 to 9.2 as s; increased from 0.32 to
0.50 (Figure 20). Other values of s yielded similar results. As the smooth surface m; contributed
little to model (12), we concluded that model (12) did not offer a clear improvement over model
(11). Since including effects for temperature and relative humidity is common and linear effects
cost only 2 degrees of freedom, we prefer model (13) to model (11).

Even though we do not need to include either barometric pressure or rain in our model (the
reduction in residual variability achieved by including ms in the model decreased from about 3.1%
to about 0.9% and the degrees of freedom expended to achieve this reduction decreased from about
28.6 t0 9.3 as sy increased from 0.15 to 0.50), we chose to proceed with model (8), which includes
linear effects for barometric pressure and rain. Residual plots for fits of model (8) with spans s for
estimating m in the range 0.10 to 0.20 showed that this model fits the Vancouver data reasonably
well (the residual plots corresponding to s = 0.15 are shown in Figure 21). We found very little
indication of serial correlation in these sets of residuals (the lag 1-4 serial correlations varied between
—0.03 and 0.03; see Figure 22 for s = 0.15), reflecting the relatively weak serial correlation in the
Vancouver raw log mortality counts (the lag 1 serial correlation was only about 0.18, as seen in

Figure 23).
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Figure 1: Scatterplots of mortality, PM10, temperature and relative humidity versus day of study

for the Mexico City data.
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model. The naive 95% confidence intervals were calculated ignoring residual correlation. The
bandwidth was allowed to range from 7 days to 365 days.
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was allowed to range from 7 days to 365 days. Bottom: Scatterplot of PM10 versus day of study.
The smooth of PM10 versus day of study for the GCV-PM10 choice of bandwidth (7 days) is
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Figure 19: Plots of the estimated weather surface m; in model (12), describing the Vancouver data,
for spans of 0.05, 0.15, 0.30 and 0.50. The span used for estimating the seasonal effect m is 0.15.
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Figure 20: Top: Percent reduction in residual variability achieved by switching from model (11)
to (12), together with the degrees of freedom expanded to achieve this reduction. Both of these
models describe the Vancouver data. Bottom: P-values associated with a series of crude F-tests for
testing model (12) against model (11). The seasonal effect m was estimated with a span of 0.15.
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Figure 21: Plot of residuals associated with model (8), describing the Vancouver data, versus all
predictors. The span used for estimating the seasonal effect m in model (8) is 0.15.
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Figure 22: Autocorrelation and partial autocorrelation plots for the residuals associated with model
(8), describing the Vancouver data. These residuals were computed by estimating the seasonal effect
mq with a span of 0.15.
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Figure 23: Autocorrelation and partial autocorrelation plots for the Vancouver log mortality counts.

45



