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abstract

When the data used to fit a nonparametric regression model are contaminated with outliers, we need to use a

robust estimator of scale in order to make robust estimation of the regression function possible. We develop a

family of M-estimators of scale constructed from consecutive differences of regression responses. Estimators

in our family robustify the estimator proposed by Rice (1984). Under appropriate conditions, we establish

the weak consistency and asymptotic normality of all estimators in our family. Estimators in our family vary

in terms of their robustness properties. We quantify the robustness of each estimator via a quantity called

maxbias. We use the maxbias as a basis for deriving the breakdown point of the estimator. Our theoretical

results allow us to specify conditions for estimators in our family to achieve maximum breakdown point of

1/2. We conduct a simulation study to compare the finite sample performance of our preferred M-estimator

with that of three other estimators.
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1. Introduction

Robust estimators of error scale are widely used in nonparametric regression with outliers. In partic-

ular, such estimators are needed to compute robust M-estimators of the regression curve (see Härdle

and Gasser, 1984, Härdle and Tsybakov, 1988, Boente and Fraiman, 1989, and references therein).

Other applications include outliers detection (see Hannig and Lee, 2006), robust bandwidth selection

for accurate estimation of the regression curve (see, for example, Boente, Fraiman and Meloche, 1997,

Leung, Marriott and Wu, 1993, Cantoni and Ronchetti, 2001, and Leung, 2005) and robust inference

about the regression curve.

Several authors considered the problem of error scale estimation in the context of outlier-free

nonparametric regression. Dette, Munk and Wagner (1998) give an exhaustive discussion of the

various estimators of error scale available in the literature and note that the most popular estimators

are based on differences of regression responses. Since they do not rely on preliminary estimation of

the regression curve itself, these difference-based estimators have fast
√

n-convergence rate and are

computationally convenient. However, such estimators do not perform well in the presence of outliers.

In this paper, we introduce a family of robust M-estimators of error scale constructed from consec-

utive differences of regression responses. Our family includes the estimator proposed by Rice (1984)

and its robustified version proposed by Boente, Fraiman and Meloche (1997) as particular cases. Un-

der appropriate regularity conditions, we establish the weak consistency and asymptotic normality

of all estimators in our family. These estimators differ in terms of their robustness properties. We

quantify the robustness of each estimator via its maxbias. We rely on maxbias to derive the break-

down point of each estimator. As far as we are aware, all the proposed estimators of error scale based

on differences fail to achieve maximum breakdown point of 1/2. Using our theoretical results we are

able to specify conditions for estimators in our family to achieve a breakdown point of 1/2.

The rest of the paper is organized as follows. In Section 2, we introduce the nonparametric

regression model of interest in this paper and identify the relevant scale parameter for this model.

In Section 3, we define a family of M-estimators for this scale parameter. In Section 4, we introduce

the family of M-scale functionals associated with the family of M-estimators. In Section 5, we show

that each M-estimator in our family is weakly consistent to its corresponding M-functional and has

an asymptotically normal distribution. In Section 6, we investigate the robustness properties of the

estimators in our family. In Section 7, we conduct a simulation study to compare the finite sample

performance of our preferred estimator against three competing estimators, including the estimators
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of Rice (1984) and Boente, Fraiman and Meloche (1997). Section 8 provides some concluding remarks.

All the proofs are collected in the Appendix.

2. Nonparametric Regression Model

The nonparametric regression model of interest in this paper can be expressed as

Yi = g(xi) + Ui, i = 1, . . . , n, (1)

where the Yi’s are observed responses, the xi’s are fixed design points, g(·) is an unknown, smooth

regression curve and the Ui’s are independent, identically distributed unobservable random errors.

We assume that the majority of the observations Yi in model (1) is of good quality and has constant

variability about the regression curve g(·), but a fraction ε is possibly of bad quality. We formalize

this assumption below.

Let G denote the distribution function of the Ui’s. Then G belongs to the ε-contaminated neigh-

bourghood:

Fε = {G ∈ D : G(y) = (1− ε)F (y) + εH(y)}. (2)

Here, D denotes the set of all distribution functions, F belongs to the scale family associated with

some fixed distribution function F0, that is, F (y) = F0(y/σ) for an unspecified scale parameter σ > 0,

H is an arbitrary distribution function in D and ε ∈ [0, 1/2] denotes the amount of contamination.

Throughout, we assume that F0 admits a symmetric, strictly positive and unimodal density f0 and

H is absolutely continuous.

Our interest is in robustly estimating the scale parameter σ from the sequence of consecutive

differences Yi+1 − Yi, i = 1, . . . , n− 1. Note that σ is not only unambiguously defined, but also fixed

across the neighbourhood Fε.
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3. M-Estimator of Error Scale

To estimate the scale parameter σ of the central distribution F in (2), we propose using a regression-

free estimator, constructed from the sequence of consecutive differences Yi+1 − Yi, i = 1, . . . , n − 1.

This estimator, referred to as an M-scale estimator, is defined as

σ̂n = inf

{
s > 0 :

1

n− 1

n−1∑
i=1

χ

(
Yi+1 − Yi

as

)
≤ b

}
. (3)

The score function χ : R → [0,∞) must be chosen by the user and the constants b ∈ (0, 1) and

a ∈ (0,∞) are tuning constants that satisfy

E[χ(Z1)] = b (4)

and

E

[
χ

(
Z2 − Z1

a

)]
= b, (5)

where Z1, Z2 are independent random variables with common distribution F0.

The infimum in (3) is needed to handle situations where the score function χ is discontinuous. If

χ is continuous, then σ̂n satisfies:

1

n− 1

n−1∑
i=1

χ

(
Yi+1 − Yi

aσ̂n

)
= b. (6)

If, in addition, χ is strictly increasing on {x : χ(x) < sup
x

χ(x)}, then σ̂n is uniquely defined by (6).

A property that is natural to expect from an estimator of scale is that of scale equivariance. It is

easy to see that the M-estimator σ̂n = σ̂n(Y1, . . . , Yn) is scale equivariant, in the sense that, for any

c ∈ R, it satisfies

σ̂n(cY1, . . . , cYn) = |c| σ̂n(Y1, . . . , Yn).

Note that σ̂n is a generic member of a family of M -estimators, whose particular members corre-

spond to different choices of the score function χ and the tuning constants a and b. In this paper,

we show that the choice of χ is not very crucial to ensuring that σ̂n achieves the desired robustness
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properties, as long as χ is bounded and smooth, but the choice of b is (see Section 6). Given b, a is

chosen so that σ̂n is Fisher-consistent when there is no contamination in the data (see Section 5).

The examples below illustrate various choices of χ, b and a for the case when F0 = Φ, where Φ is

the standard normal distribution function.

Example 1. Choosing χ(x) = x2, b = 1 and a =
√

2 in (3) yields the (non-robust) estimator of

scale proposed by Rice (1984):

σ̂(1)
n =

√√√√ 1

2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)2.

Example 2. Choosing χ(x) = I(|x| > Φ−1(3/4)), b = 1/2 and a =
√

2 in (3) yields the (robust)

estimator of scale proposed by Boente, Fraiman and Meloche (1997):

σ̂(2)
n =

Q(0.50)√
2Φ−1(3/4)

,

where Q(0.50) is the 50th quantile of the absolute differences |Yi+1 − Yi|, i = 1, . . . , n.

Example 3. Choosing χ(x) = I(|x| > Φ−1(5/8)), b = 3/4 and a =
√

2 in (3) yields the (robust)

estimator of scale

σ̂(3)
n =

Q(0.25)√
2Φ−1(5/8)

,

where Q(0.25) is the 25th quantile of the absolute differences |Yi+1 − Yi|, i = 1, . . . , n. This estimator

is a modification of the estimator in Example 2.

Example 4. For c > 0 fixed, let

χc(x) =





3 (x/c)2 − 3 (x/c)4 + (x/c)6 if |x| ≤ c

1 if |x| > c
(7)

be the score function introduced by Beaton and Tukey (1974). Choosing χ(x) = χc(x), with c =

0.70417, b = 3/4 and a =
√

2 in (3) yields the (robust) estimator of scale:

σ̂(4)
n = inf

{
s > 0 :

1

n− 1

n−1∑
i=1

χc

(
Yi+1 − Yi√

2s

)
≤ 3

4

}
.
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4. M-Scale Functional

The M-scale functional σ(G) corresponding to σ̂n is defined as

σ(G) = inf

{
s > 0 : E

[
χ

(
U2 − U1

as

)]
≤ b

}
, (8)

where we recall that U1 and U2 are independent error terms with common distribution G.

As we shall see in Section 5, σ(G) is the asymptotic value of σ̂n since, under suitable assumptions,

σ̂n converges in probability to σ(G) as n → ∞. Note that σ(G) is scale equivariant - just like σ̂n.

Also, note that, if χ is continuous, σ(G) satisfies

E

[
χ

(
U2 − U1

aσ(G)

)]
= b. (9)

If, in addition, χ is strictly increasing on {x : χ(x) < sup
x

χ(x)}, then σ(G) is uniquely defined by

(9).

5. Asymptotics

In this section, we investigate the asymptotic behavior of the M-scale estimator σ̂n under the following

assumptions:

(A1) The regression curve g : [0, 1] → R is Lipschitz continuous, that is, there exists a constant

Cg > 0 such that |g(x)− g(y)| ≤ Cg|x− y| for any x, y ∈ [0, 1].

(A2) The fixed design points xi, i = 1, . . . , n, satisfy the conditions 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 and

max
1≤i≤n−1

{|xi+1 − xi|} = O(n−1).

(A3) The score function χ is such that χ(u) = 1 for |u| ≥ c and χ(u) < 1 for |u| < c for some user-

chosen constant 0 < c < ∞. Furthermore, χ is even, satisfies χ(0) = 0, is strictly increasing on

(0, c) and is twice continuously differentiable.

Remark 1. A wide class of continuous score functions χ proposed in the robustness literature satisfy

assumption (A3). In particular, the score function in (7) satisfies this assumption.

Remark 2. By assumption (A3), we have that χ′ ≡ 0 ≡ χ′′ outside the interval [−c, c].
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The following theorem shows that the M-estimator σ̂n is weakly consistent for the M-functional

σ(G).

Theorem 1. Suppose that assumptions (A1) - (A3) hold. Then, as n →∞,

σ̂n
P−→ σ(G), (10)

with
P−→ denoting convergence in probability.

The above result suggests that σ̂n is asymptotically biased when the data are contaminated, as

it converges in probability to σ(G) instead of σ as n → ∞. When there is no contamination in the

data, that is, when ε = 0, the distribution function of the errors in model (1) is F . In this case, we

would like to be able to estimate σ, the scale parameter of F , without bias. This leads to the notion

of Fisher-consistency. We say that σ(G) is Fisher-consistent for G = F if σ(F ) = σ. It is easy to see

that the choices of b and a given in (4) and (5), respectively, ensure the Fisher-consistency of σ(G)

for G = F .

Having shown the weak consistency of the M-estimator σ̂n, we turn our attention to deriving

its asymptotic distribution. The next theorem establishes that σ̂n has an asymptotically normal

distribution.

Theorem 2. Suppose that assumptions (A1) - (A3) hold. Set

V1(G) = V ar

[
χ

(
U2 − U1

aσ(G)

)]
(11)

V2(G) = 2Cov

[
χ

(
U2 − U1

aσ(G)

)
, χ

(
U3 − U2

aσ(G)

)]
(12)

V3(G) = E

[
χ ′

(
U2 − U1

aσ(G)

)(
U2 − U1

aσ(G)2

)]
(13)

and let V (G) = (V1(G) + V2(G))/V 2
3 (G). Then, as n →∞, we have

√
n (σ̂n − σ(G))

d−→ N(0, V (G)), (14)

with
d−→ denoting convergence in distribution.
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6. Robustness Properties

In this section, we introduce the maximum generalized asymptotic bias (or maxbias) of σ̂n as the

most complete and accurate measure for assessing the robustness of σ̂n. We then use this measure as

a basis for our breakdown point considerations regarding σ̂n.

6.1. Generalized Asymptotic Bias

We have established in Section 5 that the M-estimator σ̂n converges in probability to the M-scale

functional σ(G) as n →∞. If G = F , then σ(G) = σ provided (4) and (5) hold. However, in general,

if G 6= F , then σ(G) 6= σ. In other words, σ̂n is generally asymptotically biased for G ∈ Fε.

The raw asymptotic bias of σ̂n quantifies the distance between σ(G), the asymptotic value of σ̂n,

and σ, the scale parameter of interest, and is defined as:

Br(σ(G)) =
σ(G)

σ
− 1. (15)

If G is an outliers generating distribution, the raw asymptotic bias is likely positive. If G is an inliers

generating distribution, the raw asymptotic bias is likely negative.

A more useful measure for assessing the asymptotic bias of σ̂n is the generalized asymptotic bias

of this estimator, defined as

Bg(σ(G)) =





L1

(
σ(G)

σ

)
, if 0 < σ(G) ≤ σ,

L2

(
σ(G)

σ

)
, if σ < σ(G) < ∞.

The functions L1 and L2 allow the user to penalize under-estimation and over-estimation of σ in

different ways. Both functions are assumed to be non-negative, continuous, monotone and to satisfy

the conditions:

L1(1) = L2(1) = 0 and lim
s↘0

L1(s) = lim
s→∞

L2(s) = ∞.

A robust estimator σ̂n can be expected to have a relatively small and stable generalized asymptotic

bias Bg(σ(G)) as G ranges over Fε. The overall bias performance of σ̂n on the neighbourhood Fε can
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thus be measured by the maximum generalized asymptotic bias (maxbias):

Bg(ε) = sup
G∈Fε

Bg(σ(G)). (16)

Note that Bg(ε) is scale invariant since the M-scale functional σ(G) is scale equivariant. Also, note

that the maxbias is a function that depends on ε, the fraction of contamination in the data. The

maxbias curve, obtained by plotting Bg(ε) versus ε, can be used to visually assess the robustness

properties of σ̂n. We consider σ̂n to be robust if Bg(ε) < ∞ for some ε ∈ (0, 1/2].

To derive an explicit expression for Bg(ε), let

S+(ε) = sup
G∈Fε

σ(G) (17)

and

S−(ε) = inf
G∈Fε

σ(G) (18)

be the maximum and minimum values of the M-scale functional σ(G) over Fε. Then, using the

monotonicity of L1 and L2, Bg(ε) can be expressed as:

Bg(ε) = max

{
L1

(
S−(ε)

σ

)
, L2

(
S+(ε)

σ

)}
. (19)

Figure 1 displays a plot of the functions L1(s) = − ln(s), s ∈ (0, 1] and L2(s) = ln(s), s ∈ [1,∞).

For the situation depicted in this figure, Bg(ε) = − ln(S−(ε)/σ).

6.2. Breakdown Point Considerations

If the amount of contamination in the data is too large, σ̂n can suffer two types of breakdown: it can

either explode, in the sense of taking on arbitrarily large aberrant values, or implode, in the sense of

taking on arbitrarily small aberrant values.

The asymptotic explosion breakdown point of σ̂n is defined as

ε∞ = inf{ε ∈ (0, 1/2] : S+(ε) = ∞}, (20)

10



whereas its asymptotic implosion breakdown point is defined as

ε0 = inf{ε ∈ (0, 1/2] : S−(ε) = 0}.

The overall asymptotic breakdown point of σ̂n is defined as the minimum of the asymptotic implosion

and explosion breakdown points

ε∗ = min{ε0, ε∞}. (21)

Clearly, if the amount of contamination in the data exceeds the overall asymptotic breakdown

point of σ̂n, then σ̂n ceases to provide a useful summary for the scale of the uncontaminated errors.

Note that

ε∗ = inf
{
ε ∈ (0, 1/2] : Bg(ε) = ∞}

(22)

since Bg(ε) = ∞ if and only if S−(ε) = 0 or S+(ε) = ∞.

The overall asymptotic breakdown point of σ̂n depends on the value of the tuning constant b in

(3). What is the maximum overall asymptotic breakdown point that can be achieved by σ̂n as the

value of b varies? Based on (22), to answer this question we must first derive an explicit expression

for Bg(ε).

In view of (19), to obtain an explicit expression for Bg(ε) it suffices to obtain explicit expressions

for S+(ε) and S−(ε). Such expressions are provided in Propositions 1 and 2 below, whose proofs can

be found in the Appendix. For Propositions 1 and 2 and the subsequent results in this section, we

assume without loss of generality that σ = 1.

Proposition 1. Let S+(ε) be as in (17), with ε ∈ (0, 1/2] fixed. Then, provided assumption (A3)

holds, we have:

S+(ε) =





s+(ε) if ε(2− ε) < b

∞ if ε(2− ε) ≥ b

where s+(ε) is implicitly defined by

λ+(s+(ε)) = 0. (23)

11



Here,

λ+(s) = (1− ε)2E

[
χ

(
Z2 − Z1

as

)]
+ ε(2− ε)− b, (24)

and Z1, Z2 are independent random variables with common distribution F0.

Remark 3. By (iii) of Lemma 6 in the Appendix, the equation λ+(s) = 0 admits a unique, strictly

positive solution for those ε ∈ (0, 1/2] with ε(2− ε) < b. Therefore, the quantity s+(ε) satisfying (23)

exists and is uniquely defined.

Proposition 2. Let S−(ε) be as in (18), with ε ∈ (0, 1/2] fixed. If assumption (A3) holds, then

S−(ε) =





s−(ε) if 1− ε2 > b

0 if 1− ε2 ≤ b

where s−(ε) is implicitly defined by

λ−(s−(ε)) = 0. (25)

Here,

λ−(s) = (1− ε)2E

[
χ

(
Z2 − Z1

as

)]
+ 2ε(1− ε)E

[
χ

(
Z1

as

)]
− b, (26)

and Z1, Z2 are as in Proposition 1.

Remark 4. By (iii) of Lemma 7, the equation λ−(s) = 0 admits a unique, strictly positive solution

for those ε ∈ (0, 1/2] for which 1− ε2 > b, so the quantity s−(ε) satisfying (25) exists and is uniquely

defined.

The next theorem provides an explicit expression for Bg(ε), the maxbias of σ̂n over Fε. This

theorem is proven in the Appendix.
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Theorem 3. Suppose the notation and assumptions in Propositions 1 and 2 hold. For ε ∈ (0, 1/2],

let Bg(ε) be as in (16). Also, let b ∈ (0, 1) be the tuning constant in (3). The following facts hold.

(i) If b = 3/4, then

Bg(ε) =





max{L2(s
+(ε)), L1(s

−(ε))} if ε < 1/2,

∞ if ε = 1/2.

(ii) If b ∈ (0, 3/4), then

Bg(ε) =





max{L2(s
+(ε)), L1(s

−(ε))} if ε < 1−√1− b,

∞ if 1−√1− b ≤ ε.

(iii) If b ∈ (3/4, 1), then

Bg(ε) =





max{L2(s
+(ε)), L1(s

−(ε))} if ε <
√

1− b,

∞ if
√

1− b ≤ ε.

As an immediate consequence of the above theorem, we derive an explicit expression for the overall

asymptotic breakdown point of σ̂n as a function of b:

Theorem 4. Let ε∗ be the overall asymptotic breakdown point of σ̂n defined by (22). Also, let

b ∈ (0, 1) be the tuning constant in (3).

(i) If b = 3/4, then ε∗ = 1/2.

(ii) If b ∈ (0, 3/4), then ε∗ = 1−√1− b.

(iii) If b ∈ (3/4, 1), then ε∗ =
√

1− b.

Corollary 1. The maximum overall asymptotic breakdown point that can be achieved by σ̂n as the

value of the tuning constant b in (3) varies in the interval (0, 1) is ε∗opt = 1/2; this optimal breakdown

point is attained for b = 3/4.
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So far, we have investigated the robustness properties of the M-estimator σ̂n for a general score

function χ satisfying assumption (A3). In practice, χ must be specified by the user. One particular

choice of χ that we recommend and that satisfies assumption (A3) is the score function χc in (7). The

tuning constant c > 0 should be chosen to ensure that: (i) σ̂n achieves the optimal overall asymptotic

breakdown point and (ii) σ̂n’s limiting value, σ(G), is Fisher-consistent when G = F , that is, when

there is no contamination in the data. In what follows, we explain how to choose c for the case when

F0 is the standard normal distribution function Φ.

Recall from Corollary 1 that we should choose b = 3/4 to ensure that σ̂n achieves the optimal

breakdown point of 1/2. According to the Fisher consistency considerations in Section 4, to ensure

that σ(G) is Fisher-consistent when G = F , we must choose c so that

E [χc(Z1)] = b.

Here, Z1 is a standard normal random variable. One can easily see that c = 0.70417 satisfies the

above equality.

7. Simulations

In this section, we report the results of a Monte Carlo simulation study on the finite sample properties

of the estimators σ̂
(1)
n , σ̂

(2)
n , σ̂

(3)
n and σ̂

(4)
n introduced in Examples 1 to 4. The main goals of the study

are to: (i) investigate the efficiency properties of σ̂
(2)
n , σ̂

(3)
n and σ̂

(4)
n relative to σ̂

(1)
n in the absence of

outlier contamination and (ii) compare the mean squared error performance of the four estimators in

the presence of outlier contamination.

For our simulation study, we generate data from model (1) as follows. We take n = 20, 50 and

100. We consider g(x) = sin(4πx). We take xi = (i− 1)/(n− 1), i = 1, . . . , n. We assume the Ui’s to

be independent with common distribution G = (1− ε)F + εH, where F (·) = Φ(·/σ) and σ = 1. We

allow ε to take the values 0, 0.05, 0.10, 0.20, 0.30 and 0.40. Further, we use H(y) = Φ(y/10) to model

symmetric outlier contamination and H(y) = Φ(y− 10) to model asymmetric outlier contamination.

For each model configuration, we generate 10, 000 data sets.

Figure 2 displays data generated for simulation settings with n = 100 and H(y) = Φ(y/10).

Figure 3 provides the same display for simulation settings with n = 100 and H(y) = Φ(y − 10). As

expected, the two figures reveal that the larger the amount of contamination ε, the more outliers are
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present in the data. When the contamination is symmetric, the outliers tend to be located both below

and above the true regression curve. However, when the contamination is asymmetric, the outliers

are concentrated exclusively above the regression curve. We suspect that the estimation of σ will be

more difficult when the contamination is asymmetric.

Before studying the finite sample properties of the estimators σ̂
(1)
n , σ̂

(2)
n , σ̂

(3)
n and σ̂

(4)
n , we make

some considerations regarding their overall asymptotic breakdown points. The overall asymptotic

breakdown point of σ̂
(1)
n is 0, as this estimator uses an unbounded score function. The overall asymp-

totic breakdown point of σ̂
(4)
n was determined in Section 6 to be 1/2. We do not have theoretical

results concerning the exact value of the optimal overall asymptotic breakdown point for σ̂
(2)
n and

σ̂
(3)
n . The reason for this is that, unlike σ̂

(4)
n , both of these estimators are computed with discontinuous

score functions. Nevertheless, given that these score functions can be easily adjusted to become twice

continuously differentiable, we expect the breakdown point considerations in Section 6 to hold, at

least approximately, for σ̂
(2)
n and σ̂

(3)
n . Therefore, we conjecture that σ̂

(2)
n ’s overall asymptotic break-

down point is roughly 0.29 (use Theorem 4 with b = 1/2), while σ̂
(3)
n ’s is roughly 1/2 (use Theorem

4 with b = 3/4). Our conjecture is supported by the simulation results reported in this section.

We now assess the efficiency of the robust estimators σ̂
(2)
n , σ̂

(3)
n and σ̂

(4)
n relative to the non-robust

estimator σ̂
(1)
n for those simulation settings with ε = 0. For j = 2, 3, 4 fixed, we evaluate the efficiency

of σ̂
(j)
n relative to σ̂

(1)
n by computing the ratio RE(σ̂

(j)
n , σ̂

(1)
n ) = V̂ ar(σ̂

(j)
n )/V̂ ar(σ̂

(1)
n ), where

V̂ ar(σ̂(j)
n ) =

1

10, 000

10,000∑
i=1

(
σ̂

(j)
n,i − σ̂n

(j)
)2

.

Here, σ̂
(j)
n,i is the value of σ̂

(j)
n corresponding to the ith sample generated from the model configuration

of interest and σ̂n
(j)

=
∑10,000

i=1 σ̂
(j)
n,i/10, 000 . Notice that both σ̂

(3)
n and σ̂

(4)
n have roughly the same

overall asymptotic breakdown point, so comparing their relative efficiencies is appropriate. Comparing

the relative efficiency of σ̂
(2)
n against that of σ̂

(3)
n and σ̂

(4)
n may however not be appropriate as σ̂

(2)
n has

a much smaller overall asymptotic breakdown point than both σ̂
(3)
n and σ̂

(4)
n .

Table 1 displays the values of RE(σ̂
(j)
n , σ̂

(1)
n ), j = 2, 3, 4, for the simulation settings with ε = 0.

From this table, we see that σ̂
(2)
n attains slightly better relative efficiency than σ̂

(3)
n and σ̂

(4)
n at

the expense of robustness by achieving only 25% overall asymptotic breakdown point instead of 50%.

However, σ̂
(3)
n and σ̂

(4)
n have much better robustness properties and not much worse relative efficiencies

than σ̂
(2)
n , so we prefer them to σ̂

(2)
n .
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Next, we compare the mean squared error performance of the estimators σ̂
(1)
n ,σ̂

(2)
n , σ̂

(3)
n and σ̂

(4)
n

under outlier contamination. For each simulation setting, we estimate the mean squared error of

these estimators as:

M̂SE(σ̂(j)
n ) =

1

10, 000

10,000∑
i=1

(
σ̂

(j)
n,i − σ

)2

, j = 1, 2, 3, 4.

Estimators with small mean squared error are preferred.

Table 2 shows the estimated mean squared errors of σ̂
(1)
n , σ̂

(2)
n , σ̂

(3)
n and σ̂

(4)
n for the simulation

settings with symmetric contamination. Table 3 displays similar quantities for the simulation settings

with asymmetric contamination. Based on these tables, we conclude the following.

Regardless of the sample size or the amount of contamination, σ̂
(1)
n has the poorest mean squared

error performance amongst all estimators, both for symmetric and asymmetric contamination. In

particular, note that the larger the amount of contamination in the data, the less accurate σ̂
(1)
n

becomes. This is not surprising, given that σ̂
(1)
n is non-robust and therefore expected to break down

in the presence of outliers.

For all sample sizes considered and for both types of contamination, the mean squared error

performance of σ̂
(3)
n and σ̂

(4)
n is slightly worse than that of σ̂

(2)
n when the amount of contamination

is small, that is, when ε = 0.05 or 0.10. However, as the amount of contamination becomes larger,

the mean squared error performance of σ̂
(3)
n and σ̂

(4)
n becomes marginally better than that of σ̂

(2)
n for

symmetric contamination and significantly better than that of σ̂
(2)
n for asymmetric contamination.

This behaviour is in line with the fact that σ̂
(2)
n has an (approximate) overall asymptotic breakdown

point of 0.29; we would therefore expect σ̂
(2)
n to perform poorly for amounts of contamination exceeding

its breakdown point. In fact, one can see that the mean squared error performance of σ̂
(2)
n shows signs

of deterioration even when the amount of contamination is ε = 0.20. On the other hand, both σ̂
(3)
n and

σ̂
(4)
n have an overall asymptotic breakdown point of 1/2, so they are expected to perform reasonably

well for amounts of contamination smaller than their breakdown point.

In summary, for practical use, we recommend using the estimators σ̂
(3)
n and σ̂

(4)
n .
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8. Concluding Remarks

In this paper, we introduced a family of robust M -estimators for estimating the error scale in non-

parametric regression models with outliers. The estimators in our family are regression-free, being

constructed from consecutive differences of regression responses. Under appropriate conditions, we

established the weak consistency and asymptotic normality of all estimators in our family. To quan-

tify the robustness of each M-estimator in the family in a complete and accurate way, we introduced

a quantity called maxbias. We obtained explicit expressions for this maxbias as a function of the

amount of contamination in the errors, and used these expressions to derive the breakdown point of

the estimators in our family. Our theoretical results allowed us to specify conditions for estimators

in our family to achieve maximum breakdown point of 1/2. We conducted a simulation study to

investigate the finite sample performance of our preferred M-estimator. For the settings considered

in this study, we found that this estimator outperformed the (non-robust) estimator introduced by

Rice (1984) as well as the (robust) estimator proposed by Boente, Fraiman and Meloche (1997). We

also found that, when modified to achieve an overall asymptotic breakdown point close to 1/2, the

latter estimator performed almost as well as our preferred M-estimator.
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Appendix

This appendix collects the proofs of the theoretical results introduced in Sections 5 and 6. Throughout

the appendix, we set

Sn(s) =
1

n− 1

n−1∑
i=1

χ

(
Yi+1 − Yi

as

)
− b

for s > 0 and express σ̂n as

σ̂n = inf{s > 0 : Sn(s) ≤ 0}. (27)

The next lemmas are used for proving Theorem 1.

Lemma 1. Let {Zi}i≥1 be a sequence of m-dependent, identically distributed random variables, with

V ar(Z1) < ∞. Then, as n →∞, ∑n
i=1 Zi

n

P−→ E(Z1).

Proof: By Chebyshev’s inequality, for any ε > 0 we have:

P

({∣∣∣∣
∑n

i=1 Zi

n
− E(Z1))

∣∣∣∣ ≥ ε

})
≤ 1

ε2
V ar

(∑n
i=1 Zi

n

)
.

Therefore, it suffices to show that V ar(
∑n

i=1 Zi/n) converges to zero as n → ∞. Using the m-

dependence of the sequence {Zi}i≥1 together with the Cauchy-Schwartz inequality, we obtain:

V ar

(∑n
i=1 Zi

n

)
=

1

n2

n∑
i=1

V ar(Zi) +
2

n2

∑
i<j

Cov(Zi, Zj) =
σ2

n
+

2

n2

n−m∑
i=1

m∑
j=1

Cov(Zi, Zi+j)

≤ σ2

n
+

2(n−m)mσ2

n2
.

Clearly, V ar(
∑n

i=1 Zi/n) converges to zero as n →∞.
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Lemma 2. Let G̃ be an arbitrary absolutely continuous distribution function with strictly positive

density g̃. For s > 0, define

λG̃(s) = E

[
χ

(
Ũ2 − Ũ1

as

)]
− b,

where χ is a score function satisfying assumption (A3), a and b are tuning constants satisfying

equations (4)-(5), and Ũ1, Ũ2 are independent random variables with common distribution G̃. Then

the function λG̃ is continuous, strictly decreasing and admits the limits:

lim
s→∞

λG̃(s) = −b and lim
s↘0

λG̃(s) = 1− b.

Proof: The continuity of λG̃ is an immediate consequence of the continuity of χ. To show λG̃

is strictly decreasing, we use reduction to the absurd. Specifically, we assume that there exist two

positive real numbers s1 < s2 such that λG̃(s1) = λG̃(s2). Then:

0 = λG̃(s1)− λG̃(s2) =

∫ ∞

−∞

[
χ

(
v

as1

)
− χ

(
v

as2

)]
g̃∗(v)dv, (28)

where g̃∗ is the strictly positive density function of the random variable V2 − V1, given by

g̃∗(x) =

∫ +∞

−∞
g̃(x− y)g̃(−y)dy.

Since, by assumption (A3), χ(v/(as1)) ≥ χ(v/(as2)) for any real number v, (28) implies that

χ

(
v

as1

)
− χ

(
v

as2

)
= 0 a.e. (v).

But this contradicts assumption (A3), which states that χ is strictly increasing on the set {v ≥ 0 :

χ(v) < 1}. In conclusion, λG̃ is strictly increasing. The derivation of the two limits is straightforward.
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Lemma 3. Let U1, U2 be error terms in model (1) and let G = (1− ε)F + εH ∈ Fε be their common

distribution. For s > 0, define

λG(s) = E

[
χ

(
U2 − U1

as

)]
− b,

where χ is a score function satisfying assumption (A3), and a and b are tuning constants satisfying

equations (4) - (5). Then:

(i) The function λG is continuous, strictly decreasing and admits the limits lim
s→∞

λG(s) = −b and

lim
s↘0

λG(s) = 1− b.

(ii) The equation λG(s) = 0 admits a unique solution, namely the M-scale functional σ(G) defined in

(8).

(iii) For any s > 0, λG(s) can be decomposed as

λG(s) = (1− ε)2E

[
χ

(
V2 − V1

as

)]
+ 2ε(1− ε)E

[
χ

(
V2 −W1

as

)]
+ ε2E

[
χ

(
W2 −W1

as

)]
− b,

where V1, V2 are independent random variables with common distribution F , W1,W2 are independent

random variables with common distribution H, and (Vi,Wi), i = 1, 2, are independent.

Proof: The proof of (i) follows from Lemma 2 with G̃ = G; the proof of (ii) follows immediately

from (i).

For (iii), let B1 and B2 be independent, identically distributed random variables having a Bernoulli

distribution with parameter ε. If Bi is independent of {Vi,Wi}, then we can write Ui as Ui =

(1−Bi) Vi + BiWi, where i = 1, 2. Therefore:

E

[
χ

(
U2 − U1

as

)]
= E

[
χ

(
(1−B2) V2 + B2W2 − (1−B1) V1 −B1W1

as

)]

= P (B1 = 0, B2 = 0) E

[
χ

(
V2 − V1

as

)]
+ P (B1 = 1, B2 = 0) E

[
χ

(
V2 −W1

as

)]

+ P (B1 = 0, B2 = 1) E

[
χ

(
W2 − V1

as

)]
+ P (B1 = 1, B2 = 1) E

[
χ

(
W2 −W1

as

)]
.

Result (iii) follows easily from the above by using the independence of B1 and B2 as well as the

properties of the Bernoulli distribution.
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Proof of Theorem 1:

To prove the theorem it suffices to show that, for any δ > 0, lim
n→∞

P{σ̂n ≤ σ(G) + δ} = 1 and

lim
n→∞

P{σ̂n < σ(G)− δ} = 0. The former result is proven below. The latter result can be established

by a similar argument.

Fix δ > 0 and note that the inclusion {σ̂n ≤ σ(G) + δ} ⊇ {Sn(σ(G) + δ) ≤ 0} holds since, by

(27), {σ̂n ≤ s} ⊇ {Sn(s) ≤ 0} for any s > 0. Therefore, it is enough to prove:

lim
n→∞

P{Sn(σ(G) + δ) ≤ 0} = 1.

We prove this by showing that Sn(σ(G) + δ) converges in probability to a strictly negative quantity.

Using the Mean Value Theorem, we have

Sn(σ(G) + δ) =

[
1

n− 1

n−1∑
i=1

χ

(
Ui+1 − Ui

a(σ(G) + δ)

)
− b

]

+
1

n− 1

n−1∑
i=1

χ′(Wi) · (g(xi+1)− g(xi)) · 1

a(σ(G) + δ)

with Wi being an intermediate value between (Yi+1−Yi)/[a(σ(G)+ δ)] and (Ui+1−Ui)/[a(σ(G)+ δ)].

The first term converges in probability to λG(σ(G) + δ) by Lemma 1. The second term converges

in probability to zero as it is bounded by O(1/n). Combining these results yields that Sn(σ(G) + δ)

converges in probability to λG(σ(G) + δ). Clearly, λG(σ(G) + δ) is strictly negative as λG is strictly

decreasing by (i) of Lemma 3, and satisfies λG(σ(G)) = 0 by (ii) of Lemma 3.

Lemmas 4 and 5 below are needed for proving Theorem 2. The proof of Lemma 4 can be found

in Chung (1974, pp. 214–215).

Lemma 4. Suppose {Zi}i≥1 is a sequence of m-dependent, uniformly bounded random variables such

that

lim
n→∞

√
V ar(

∑n
i=1 Zi)

n1/3
= ∞.

Then, as n →∞, we have

∑n
i=1 Zi − E(

∑n
i=1 Zi)√

V ar(
∑n

i=1 Zi)

d−→ N(0, 1).
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Lemma 5. Let χ be a score function satisfying assumption (A3) and let K = [s1, s2] ⊂ (0,∞) be a

compact interval. For y an arbitrary real number and s > 0, set h(y, s) = χ′(y/s)(y/s2). Then, for

each s0 ∈ K, h is continuous in s0 uniformly in y.

Proof: The proof is similar to that of Lemma 7.7 in Salibian-Barrera (2000). First note that, as

the support of χ′ is the interval [−c, c], then

h(y, s) = 0, ∀s ∈ [s1, s2],∀y /∈ T = [−cs2, cs2].

Thus, we need to consider only the points (y, s) with y ∈ T .

Let so ∈ K and ε > 0. We have

|h(y, s)− h(y, so)| =
∣∣χ′(y/s)y/s2 − χ′(y/so)y/s2

o

∣∣

≤ |χ′(y/s)|
∣∣∣∣
y

s2
− y

s2
o

∣∣∣∣ +

∣∣∣∣
y

s2
o

∣∣∣∣ |χ′(y/s)− χ′(y/so)|

≤ 2ccχ′

[∣∣∣∣
1

s2
− 1

s2
o

∣∣∣∣ +
1

s2
1

|χ′(y/s)− χ′(y/so)|
]

.

Using the uniform continuity of u(s) = 1/s2 and χ′ on the compact set K and the fact that |y| ≤ 2cs2

yields the desired result.

Proof of Theorem 2:

Using the Mean Value Theorem, together with the fact that Sn(σ̂n) = 0 by equation (6), we obtain

√
n(σ̂n − σ(G)) =

√
n√

n− 1
·
√

n− 1Sn(σ(G))

−S ′n(σ̃n)
,

with σ̃n being an intermediate point between σ̂n and σ(G). The desired asymptotic normality result

will follow from Slutsky’s Theorem, provided

√
n− 1Sn(σ(G))

d−→ N(0, V1(G) + V2(G)) (29)

and

−S ′n(σ̃n) =
1

n− 1

n−1∑
i=1

χ′
(

Yi+1 − Yi

aσ̃n

)(
Yi+1 − Yi

aσ̃2
n

)
P−→ V3(G) (30)
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as n →∞.

To prove (29), set

Tn(G) =
n−1∑
i=1

[
χ

(
Yi+1 − Yi

aσ(G)

)
− b

]
≡

n−1∑
i=1

Zi

and write:

√
n− 1Sn(σ(G)) =

√
V ar(Tn(G))√

n− 1
· Tn(G)− E(Tn(G))√

V ar(Tn(G))
+

E(Tn(G))√
n− 1

.

By Slutsky’s Theorem, it suffices to show:

lim
n→∞

√
V ar(Tn(G))√

n− 1
=

√
V1(G) + V2(G), (31)

Tn(G)− E(Tn(G))√
V ar(Tn(G))

d−→ N(0, 1) (32)

and

lim
n→∞

E(Tn(G))√
n− 1

= 0. (33)

Result (31) is proven below. Result (32) follows directly from Lemma 4. Clearly, the Zi’s are uniformly

bounded and, if (31) holds,

lim
n→∞

√
V ar(Tn(G))

n1/3
= lim

n→∞

√
V ar(Tn(G))√

n− 1
· lim

n→∞

√
n− 1

n1/3
= ∞.

Result (33) is straightforward.

Consider (31). By the definition of Tn(G) and the one-dependence of Yi+1 − Yi, i = 1, . . . , n− 1,

we have:

V ar(Tn(G)) =
n−1∑
i=1

V ar

[
χ

(
Yi+1 − Yi

aσ(G)

)]
+ 2

n−2∑
i=1

Cov

[
χ

(
Yi+1 − Yi

aσ(G)

)
, χ

(
Yi+2 − Yi+1

aσ(G)

)]
. (34)
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Using a Mean Value Theorem argument, the first sum in (34) can be written as

n−1∑
i=1

V ar

[
χ

(
Yi+1 − Yi

aσ(G)

)]
=

n−1∑
i=1

V ar

[
χ

(
Ui+1 − Ui

aσ(G)

)
+

g(xi+1)− g(xi)

aσ(G)
· χ ′(ξi)

]

=
n−1∑
i=1

V ar

[
χ

(
Ui+1 − Ui

aσ(G)

)]
+

n−1∑
i=1

[
g(xi+1)− g(xi)

aσ(G)

]2

· V ar [χ ′(ξi)]

+ 2Cov

[
χ

(
Ui+1 − Ui

aσ(G)

)
,
g(xi+1)− g(xi)

aσ(G)
· χ ′(ξi)

]
,

where ξi is an intermediate point between Ui+1 − Ui and g(xi+1) − g(xi). The first term equals

(n − 1)V1(G) since Ui+1 − Ui, i = 1, . . . , n − 1, are identically distributed random variables. The

second term is bounded by O(1/n) = o(1). An application of the Cauchy-Schwartz inequality shows

that the third term is bounded by O(1). Combining these results we obtain that the first sum in (34)

is (n−1)V1(G)+O(1). A similar argument yields that the second sum in (34) is (n−2)V2(G)+O(1).

Thus, V ar(Tn(G)) = (n− 1)V1(G) + (n− 2)V2(G) +O(1), and result (31) is immediate.

To complete the proof of the theorem, we must show that result (30) holds. The left hand side of

(30) can be written as

−S ′n(σ̃n) =
1

n− 1

n−1∑
i=1

[
h

(
Yi+1 − Yi

a
, σ̃n

)
− h

(
Yi+1 − Yi

a
, σ(G)

)]

+
1

n− 1

n−1∑
i=1

h

(
Yi+1 − Yi

a
, σ(G)

)
,

where h(y, s) = χ′(y/s)(y/s2). The first term converges to zero in probability by Theorem 1 and

Lemma 5. Using the Mean Value Theorem, the second term can be expressed as:

1

n− 1

n−1∑
i=1

h

(
Yi+1 − Yi

a
, σ(G)

)
=

1

n− 1

n−1∑
i=1

h

(
Ui+1 − Ui

a
, σ(G)

)

+
1

n− 1

n−1∑
i=1

[χ′′(ξi) · ξi + χ′(ξi)]

[
g(xi+1)− g(xi)

aσ(G)2

]
,

where ξi is an intermediate point between (Yi+1 − Yi)/(aσ(G)) and (Ui+1 − Ui)/(aσ(G)). By Lemma

1, the first term converges in probability to V3(G). The second term converges in probability to zero

as it is bounded by O(1/n). Combining these results yields (30).
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Lemmas 6 and 7 below are needed for proving Propositions 1 and 2. The proof of Lemma 6 is

given below. The proof of Lemma 7 is similar to that of Lemma 6, so we omit it.

Lemma 6. For n ≥ 1 and ε ∈ (0, 1/2], let Gn = (1 − ε)F0 + εHn be a contaminated distribution,

where F0 is the nominal distribution of the ε-contaminated neighborhood in (2) and Hn(y) = Φ(y/n).

Moreover, for s > 0, set

λGn(s) = E

[
χ

(
U2,n − U1,n

as

)]
− b,

where U1,n, U2,n are independent random variables with common distribution Gn, χ is a score function

satisfying assumption (A3) and a and b are tuning constants satisfying equations (4)-(5). Then the

following facts hold.

(i) For any s > 0, we have:

lim
n→∞

λGn(s) = λ+(s),

with λ+(s) as in (24).

(ii) The function λ+ is continuous, strictly decreasing and admits the limits:

lim
s↘0

λ+(s) = 1− b and lim
s→∞

λ+(s) = ε(2− ε)− b.

(iii) If ε(2− ε) < b, the equation λ+(s) = 0 has a unique finite, strictly positive solution.

Proof: For (i), fix s > 0 and use (iii) of Lemma 3 with G = Gn (hence F = F0 and H = Hn) to

write:

λGn(s) = (1− ε2)E

[
χ

(
Z2 − Z1

as

)]
+ 2ε(1− ε)E

[
χ

(
Z2 −W

(n)
1

as

)]
+ ε2E

[(
W

(n)
2 −W

(n)
1

as

)]
− b,

(35)

where Z1, Z2 are independent random variables with common distribution F0, and W
(n)
1 , W

(n)
2 are

independent random variables with common distribution Hn. Furthermore, (Zi,W
(n)
i ), i = 1, 2, are

independent.
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To analyze the second term in (35), note that the density of Z2 −W
(n)
1 is given by

g(x) =

∫ ∞

−∞

1

n
φ

(
x− y

n

)
f0(y)dy,

where φ = Φ′ and f0 = F ′
0. Therefore,

E

[
χ

(
Z2 −W

(n)
1

as

)]
=

∫ ∞

−∞
χ

( x

as

)
g(x)dx =

∫ ∞

−∞

∫ ∞

−∞
χ

( x

as

) 1

n
φ

(
x− y

n

)
f0(y)dydx

or, equivalently,

E

[
χ

(
Z2 −W

(n)
1

as

)]
=

∫ ∞

−∞

∫ ∞

−∞
χ

(
z + nu

as

)
f0(z)φ(u)dzdu.

Taking limit as n goes to infinity in both sides of the above and using the Dominated Convergence

Theorem together with the fact that χ(∞) = 1 (assumption (A3)) yields that the second term in

(35) equals 1. A similar argument yields that the third term in (35) equals 1. In conclusion, (35) can

be re-written as

λGn(s) = (1− ε2)E

[
χ

(
Z2 − Z1

as

)]
+ 2ε(1− ε) + ε2 − b

= (1− ε2)E

[
χ

(
Z2 − Z1

as

)]
+ ε(2− ε)− b ≡ λ+(s)

by the definition of λ+(s) in (24). Thus, (i) holds.

For (ii) and (iii), write:

λ+(s) = (1− ε2)

{
E

[
χ

(
Z2 − Z1

as

)]
− b + b

}
+ ε(2− ε)− b

≡ (1− ε)2 {λF0(s) + b}+ ε(2− ε)− b.

and use Lemma 3 with G̃ = F0.
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Lemma 7. For n ≥ 1 and ε ∈ (0, 1/2], let Gn = (1 − ε)F0 + εHn be a contaminated distribution,

where F0 is the nominal distribution of the ε-contaminated neighborhood in (2) and Hn(y) = Φ(ny).

Moreover, for s > 0, set

λGn(s) = E

[
χ

(
U2,n − U1,n

as

)]
− b,

where U1,n, U2,n are independent random variables with common distribution Gn, χ is a score function

satisfying assumption (A3) and a and b are tuning constants satisfying equations (4)-(5). Then the

following facts hold.

(i) For any s > 0, we have:

lim
n→∞

λGn(s) = λ−(s),

with λ−(s) as in (26).

(ii) The function λ− is continuous, strictly decreasing and admits the limits:

lim
s↘0

λ−(s) = 1− ε2 − b and lim
s→∞

λ−(s) = −b.

(iii) If 1− ε2 > b, the equation λ−(s) = 0 has a unique finite, strictly positive solution.

Proof of Proposition 1:

Fix ε ∈ (0, 1/2] such that ε(2 − ε) < b. By (17), to prove that S+(ε) = s+(ε), it suffices to show

that the following facts hold: (i) σ(G) ≤ s+(ε) for any G ∈ Fε and (ii) there exists a sequence of

distributions {Gn}n≥1 ⊆ Fε such that lim
n→∞

σ(Gn) = s+(ε).

For (i), fix G ∈ Fε. If the inclusion

{s > 0 : s > s+(ε)} ⊆ {s > 0 : λG(s) ≤ 0} (36)

holds, then the proof of (i) follows by taking infimum in both sides of (36) and using the definition

of σ(G) in (8). To prove (36), take s > s+(ε) and note that λG(s) < λG(s+(ε)) since λG is strictly

decreasing by (i) of Lemma 3. Thus, it is enough to show λG(s+(ε)) ≤ 0. Using (iii) of Lemma 3
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with s = s+(ε), we write:

λG(s+(ε)) = (1− ε)2E

[
χ

(
Z2 − Z1

as+(ε)

)]
+ ε(1− ε)E

[
χ

(
Z2 −W1

as+(ε)

)]

+ ε(1− ε)E

[
χ

(
W2 − Z1

as+(ε)

)]
+ ε2E

[
χ

(
W2 −W1

as+(ε)

)]
− b,

where Z1, Z2 are independent random variables with common distribution F0, W1,W2 are independent

random variables with common distribution H and (Zi,Wi), i = 1, 2, are independent. Using that

||χ||∞ = 1 (assumption (A3)) together with equation (24), we get

λG(s+(ε)) ≤ (1− ε)2E

[
χ

(
Z2 − Z1

as+(ε)

)]
+ ε(2− ε)− b = λ+(s+(ε)) = 0.

For (ii), define the sequence of distributions {Gn}n≥1 ⊆ Fε such that Gn = (1− ε)F0 + εHn, with

Hn(y) = Φ(y/n). Then proceed as follows.

Fix 0 < δ < s+(ε). Set d = s+(ε) − δ and δ1 = λ+(d) − λ+(s+(ε)) and note that δ1 > 0

since, by (ii) of Lemma 6, λ+ is strictly decreasing. Given that limn→∞ λGn(d) = λ+(d) by (i) of

Lemma 6 with s = d, there exists N0 ≥ 1 such that, for any n ≥ N0, |λGn(d) − λ+(d)| < δ1, hence

λGn(d) > λ+(d)− δ1 = λ+(s+(ε)) = 0. By Lemma 2 with G̃ = Gn, the equation λGn(s) = 0 admits a

unique finite, strictly positive solution. If we denote this solution by σ(Gn), then λGn(σ(Gn)) = 0 and

the above yields that λGn(d) > λGn(σ(Gn)) for any n ≥ N0. But λGn is strictly decreasing by Lemma

2 with G̃ = Gn, so σ(Gn) > d or, equivalently, σ(Gn) > s+(ε)− δ for any n ≥ N0. Also, considering

that for each n ≥ 1, σ(Gn) ≤ s+(ε), we conclude that |σ(Gn)− s+(ε)| < δ, for each n ≥ N0, and, as

δ was chosen arbitrarily, lim
n→∞

σ(Gn) = s+(ε). Thus, (ii) holds.

To complete the proof of Proposition 1, it remains to show that, for ε ∈ (0, 1/2] fixed such that

ε(2− ε) ≥ b, S+(ε) = ∞. This result follows if we show that there exists a sequence of distributions

{Gn}n≥1 ⊆ Fε satisfying lim
n→∞

σ(Gn) = ∞.

Consider the sequence of distributions {Gn}n≥1 ⊆ Fε, where Gn = (1− ε)F0 + εHn and Hn(y) =

Φ(y/n). Let σ(Gn) be the solution to the equation λGn(s) = 0; by Lemma 2 with G̃ = Gn, λGn is

strictly decreasing hence σ(Gn) is uniquely defined, finite and strictly positive. Suppose, by contra-

diction, that there exists K > 0 such that σ(Gn) ≤ K for any n ≥ 1. Then, using the monotonicity

of λGn , we have λGn(σ(Gn)) > λGn(K) for any n ≥ 1. Further, using that λGn(σ(Gn)) = 0 for any

n ≥ 1, we get λGn(K) < 0 for any n ≥ 1. We now show that lim
n→∞

λGn(K) ≥ 0, which contradicts the
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above.

By (i) of Lemma 6 with s = K, lim
n→∞

λGn(K) = λ+(K), so it suffices to show that λ+(K) ≥ 0.

Using (ii) of Lemma 6, we obtain that λ+(K) ≥ ε(2 − ε) − b. Since ε(2 − ε) ≥ b, we conclude that

λ+(K) ≥ 0.

Proof of Proposition 2:

Fix ε ∈ (0, 1/2] such that 1− ε2 > b. In view of (18), to prove that S−(ε) = s−(ε), it is enough to

show the following: (i) s−(ε) ≤ σ(G) for any G ∈ Fε and (ii) there exists a sequence of distributions

{Gn}n≥1 ⊆ Fε such that lim
n→∞

σ(Gn) = s−(ε).

For (i), fix G ∈ Fε and note that, if the inclusion

{s > 0 : s < s−(ε)} ⊆ {s > 0 : λG(s) > 0} (37)

holds, then the proof follows by taking infimum in both sides of (37) and using the definition of σ(G)

in (8). To prove (37), take 0 < s < s−(ε) and note that λG(s) > λG(s−(ε)) since, by (i) of Lemma 3,

λG is strictly decreasing. To show λG(s) > 0 it therefore suffices to show λG(s−(ε)) ≥ 0. This fact is

proven below.

Using (iii) of Lemma 3 with s = s−(ε), we express λG(s−(ε)) as:

λG(s−(ε)) = (1− ε)2E

[
χ

(
Z2 − Z1

as−(ε)

)]
+ 2ε(1− ε)E

[
χ

(
Z2 −W1

as−(ε)

)]

+ ε2E

[
χ

(
W2 −W1

as−(ε)

)]
− b. (38)

Here, Z1 and Z2 are independent random variables with common distribution F0. Also, W1 and W2

are independent random variables with common distribution H. Finally, Z2 and W1 are independent.

To analyze the second term in (38), use that Z2 −W1 has density g∗(x) =
∫∞
−∞ h(x)f0(x − t)dt,

with h = H ′ and f0 = F ′
0. Then, using the symmetry and unimodality of f0 together with the fact

that χ is even and increasing, we have:
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E

[
χ

(
Z2 −W1

as−(ε)

)]
=

∫ ∞

−∞
χ

(
x

as−(ε)

)
g∗(x)dx

=

∫ ∞

−∞
h(t)

[∫ ∞

−∞
χ

(
x

as−(ε)

)
f0(x− t)dx

]
dt

≥
[∫ ∞

−∞
h(t)dt

] [∫ ∞

−∞
χ

(
x

as−(ε)

)
f0(x)dx

]

= E

[
χ

(
Z2

as−(ε)

)]
.

The third term in (38) is clearly positive as χ itself is positive. Therefore:

λG(s−(ε)) ≥ (1− ε)2E

[
χ

(
Z2 − Z1

as−(ε)

)]
+ 2ε(1− ε)E

[
χ

(
Z2

as−(ε)

)]
− b

= λ−(s−(ε)) = 0.

The first equality holds by (26) with s = s−(ε), while the second equality holds by (25).

For (ii), define the sequence of distributions {Gn}n≥1 ⊆ Fε such that Gn = (1− ε)F0 + εHn, where

Hn(y) = Φ(ny). Then show that limn→∞ σ(Gn) = s−(ε) using the same technique as in the proof of

Proposition 1.

The proof will be completed once we show that S−(ε) = 0 for any ε ∈ (0, 1/2] for which 1− ε2 ≤ b.

This fact follows by showing that, for any such ε, there exists a sequence of distributions {Gn}n≥1 ⊆ Fε

satisfying lim
n→∞

σ(Gn) = 0. This is established using an argument by contradiction as in the proof of

Proposition 1.

Proof of Theorem 3:

Let ε ∈ (0, 1/2]. Using the definition of Bg(ε) in (16), the explicit expressions for S+(ε) and S−(ε)

provided in Propositions 1 and 2 and the fact that σ = 1, we obtain:

Bg(ε) =





max{L2(s
+(ε)), L1(s

+(ε))} if ε(2− ε) < b < 1− ε2

∞ else.
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To prove the theorem, it therefore suffices to solve the system of inequalities below with respect to ε





0 < ε ≤ 1/2

ε(2− ε) < b

1− ε2 > b.

One can easily see that the ε’s that solve this system must satisfy





ε ∈ (0, 1/2]

ε ∈ (−∞, 1−√1− b) ∪ (1 +
√

1− b, +∞)

ε ∈ (−√1− b,
√

1− b).

In particular, if b = 3/4, then ε ∈ (0, 1/2). If b ∈ (0, 3/4), then ε ∈ (0, 1 − √
1− b). Finally, if

b ∈ (3/4, 1), then ε ∈ (0,
√

1− b).
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Figure 1: Plot of the functions L1(s) = − ln(s), 0 < s ≤ 1, and L2(s) = ln(s), s ≥ 1. For the situation
depicted in this figure, the maxbias is Bg(ε) = − ln(S−(ε)/σ).
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Figure 2: Data simulated from model (1) for the simulation settings with n = 100 and H(y) =
Φ(y/10). The six panels show data corresponding to different amounts of contamination. The true
regression function is superimposed.
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Figure 3: Data simulated from model (2) for the simulation settings with n = 100 and H(y) =
Φ(y − 10). The six panels show data corresponding to different amounts of contamination. The true
regression curve is superimposed.
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TABLE 1: Efficiencies of σ̂
(2)
n , σ̂

(3)
n and σ̂

(4)
n relative to σ̂

(1)
n for the simulation settings with ε = 0.

n RE(σ̂
(2)
n , σ̂

(1)
n ) RE(σ̂

(3)
n , σ̂

(1)
n ) RE(σ̂

(4)
n , σ̂

(1)
n )

20 0.592 0.373 0.447

50 0.653 0.438 0.525

100 0.672 0.454 0.535

TABLE 2: Estimates for the mean squared error of the scale estimators σ̂
(1)
n , σ̂

(2)
n , σ̂

(3)
n and σ̂

(4)
n . The

contaminating distribution is symmetric; its distribution function is H(y) = Φ(y/10).

Estimator ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.30 ε = 0.40

n = 20 σ̂
(1)
n 3.012 6.385 13.805 21.660 29.930

σ̂
(2)
n 0.273 0.549 2.349 7.346 15.860

σ̂
(3)
n 0.519 0.805 1.816 4.394 10.060

σ̂
(4)
n 0.352 0.578 1.449 3.720 8.544

n = 50 σ̂
(1)
n 2.505 5.661 13.027 20.900 29.220

σ̂
(2)
n 0.072 0.163 0.730 3.181 10.060

σ̂
(3)
n 0.129 0.217 0.602 1.520 3.808

σ̂
(4)
n 0.092 0.168 0.526 1.455 3.867

n = 100 σ̂
(1)
n 2.319 5.452 12.78 20.770 29.020

σ̂
(2)
n 0.038 0.100 0.485 2.106 7.781

σ̂
(3)
n 0.063 0.118 0.382 1.050 2.672

σ̂
(4)
n 0.047 0.098 0.356 1.055 2.849
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TABLE 3: Estimates for the mean squared error of the scale estimators σ̂
(1)
n , σ̂

(2)
n , σ̂

(3)
n and σ̂

(4)
n . The

contaminating distribution is asymmetric; its distribution function is H(y) = Φ(y − 10).

Estimator ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.30 ε = 0.40

n = 20 σ̂
(1)
n 2.564 5.281 10.32 14.120 16.440

σ̂
(2)
n 0.329 1.049 6.691 17.160 26.900

σ̂
(3)
n 0.560 0.917 2.274 5.011 8.280

σ̂
(4)
n 0.386 0.678 1.842 4.054 6.591

n = 50 σ̂
(1)
n 2.160 4.816 9.882 13.720 16.090

σ̂
(2)
n 0.082 0.204 1.588 9.970 23.120

σ̂
(3)
n 0.140 0.248 0.645 1.306 2.053

σ̂
(4)
n 0.102 0.196 0.577 1.276 2.119

n = 100 σ̂
(1)
n 2.037 4.703 9.778 13.670 16.050

σ̂
(2)
n 0.045 0.126 0.668 5.461 20.050

σ̂
(3)
n 0.069 0.135 0.412 0.897 1.434

σ̂
(4)
n 0.052 0.115 0.393 0.913 1.528

37


